Teorema de Liouville


Teorema de Liouville

Existen varios teoremas conocidos como Teorema de Liouville atribuidos a Joseph Liouville:



Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Teorema de Liouville (análisis complejo) — Teorema de Liouville: Sea una función entera y acotada (es decir existe tal que ), entonces resulta que es constante …   Enciclopedia Universal

  • Teorema de Liouville (análisis complejo) — Para otros teoremas homónimos, véase Teorema de Liouville. En matemáticas, y en particular en el análisis complejo, el teorema de Liouville afirma que si una función es holomorfa en todo el plano complejo y está acotada, entonces es constante.… …   Wikipedia Español

  • Teorema de Liouville (mecánica hamiltoniana) — Para otros usos de este término, véase Teorema de Liouville. El teorema de Liouville es un resultado de la mecánica hamiltoniana sobre la evolución temporal de un sistema mecánico. Un conjunto de partículas con condiciones iniciales cercanas… …   Wikipedia Español

  • Teorema fundamental del álgebra — El teorema fundamental del álgebra establece que un polinomio en una variable, no constante y con coeficientes complejos, tiene tantas raíces[1] como indica su grado, contando las raíces con sus multiplicidades. En otras palabras, dado un… …   Wikipedia Español

  • Joseph Liouville — Joseph Liouville. Nacimiento 24 de marzo de 1809 …   Wikipedia Español

  • Transformación canónica — En mecánica hamiltoniana, una transformación canónica es un cambio de coordenadas canónicamente conjugadas que preserva la forma canónica de las ecuaciones de Hamilton, aun cuando la propia forma del Hamiltoniano no queda invariante. Las… …   Wikipedia Español

  • Mecánica hamiltoniana — La mecánica hamiltoniana fue formulada en 1833 por William R. Hamilton. Como la mecánica lagrangiana, es una reformulación de la mecánica clásica. La mecánica hamiltoniana puede ser formulada por sí misma, usando los espacios simplécticos, sin… …   Wikipedia Español

  • Análisis complejo — Gráfico de la función f(z)=(z2 1)(z 2 i)2/(z2+2+2i). La coloración representa el argumento de la función, mientas que el brillo representa el módulo. El análisis complejo es la rama de las matemáticas que en parte investiga las funciones… …   Wikipedia Español

  • Función armónica — En matemáticas, sea f : D → R (donde D es un subconjunto abierto de Rn) una función real de n variables, se la llama armónica en D si sobre D tiene derivadas parciales continuas de primer y segundo orden y satisfacen la ecuación de Laplace… …   Wikipedia Español

  • Topología simpléctica — La topología simpléctica es aquella parte de la matemática referida al estudio de las variedades simplécticas. Estas variedades se presentan naturalmente en la formulación hamiltoniana de la mecánica clásica, que proporciona una de las… …   Wikipedia Español