Viento del gradiente

Viento del gradiente
En el centro del dibujo existe una baja presión, por lo que la fuerza del gradiente de presión (flechas azules) apunta hacia él. La fuerza de Coriolis (flecha roja) actúa a la derecha de la velocidad (suponiendo que estamos en el hemisferio norte). Aunque inicialmente la trayectoria del aire apunta hacia el centro, rápidamente se ve desviado por Coriolis, hasta establecer una trayectoria curvada en torno a la baja presión.

El viento del gradiente es una aproximación física al viento real. Aunque el nombre se puede aplicar en general a todo viento horizontal que sea paralelo a las isobaras y en el que la aceleración tangencial es nula, es más habitual hacerlo cuando se considera que el viento es producto del equilibrio entre el gradiente de presión, el efecto de Coriolis y la aceleración centrípeta. Es este último término el que permite considerar que la trayectoria del viento es curvada, lo que constituye un gran avance respecto el viento geostrófico, por lo que se considera a veces que el viento del gradiente es un refinamiento del modelo geostrófico. El viento del gradiente realiza (al igual que el geostrófico) la simplificación de suponer que las fuerzas de rozamiento son despreciables.

Contenido

Ecuación del viento del gradiente

Deducción

Partimos de las expresión para la fuerza del gradiente de presión por unidad de volumen:

 f_P =-{\partial P \over \partial x}

Donde P es la presión y x es la dirección en la que varía la presión. Igualmente la fuerza centrífuga por unidad de volumen es:

 f_c = -\rho{v^2 \over R}

Donde ρ es la densidad del aire, v la velocidad y R el radio de giro (positivo cuando, desde el punto de vista del aire, el giro se produce hacia la izquierda). Finalmente el término de la fuerza de Coriolis por unidad de volumen es:

 f_C = -2\rho \left(\vec{\omega} \times \vec{v} \right) = \rho f v

Donde ω es la velocidad angular de la Tierra, v es la velocidad del viento y f es el parámetro de Coriolis, que tiene un valor aproximado de 10-4 en latitudes medias, creciendo en los polos geográficos y haciéndose nulo en el ecuador. Su fórmula correspondiente es f = 2 Ω sen φ, donde:

  • Ω es la velocidad angular de rotación de la Tierra y vale 2 π / 86400 (rad/s).
  • φ es la latitud.

Si consideramos la suma de todas ellas:

f_P + f_c + f_C = -\frac{\rho v^2}{R}-\rho f v -\frac{\part P}{\part x}=0

Resolviendo la ecuación anterior para la velocidad del viento del gradiente:

 v = - {{f R} \over 2} \pm {\sqrt {{{f^2 R^2} \over 4} - {R \over \rho} {\partial P \over \partial x}}}

que también se puede expresar en función del geostrófico (VG):

 {{v_G} \over v} = 1 + {v \over \ fR}

Interpretación física

Configuraciones del viento del gradiente en función del sentido del giro y de si se trata de una alta o una baja presión.

No todas las soluciones matemáticas de la ecuación son físicamente posibles. De entrada, sólo son posibles aquellas velocidades positivas. Teniendo esto en cuenta existen cuatro posibilidades (ver esquema):

1. Alta presión, circulación ciclónica: R > 0 y dP/dx > 0. Es imposible, puesto que tanto la fuerza de Coriolis como la del gradiente de presión apuntan hacia afuera. Por lo tanto no existe nada que genere fuerza centrípeta.

2. Alta presión, circulación anticiclónica: R < 0 y dP/dx < 0. Es posible, puesto que la fuerza de Coriolis apunta hacia adentro. La fuerza de Coriolis debe ser mayor que la fuerza del gradiente de presión para que el movimiento anticiclónico sea posible, esto nos deja con dos posibilidades:

  • v > –fR/2 Alta anómala, no posible ya que aquí la fuerza de Coriolis es menor que la del gradiente de presión.
  • v < –fR/2 Alta normal. Esta es la situación real que se da en las altas presiones terrestres. Como su movimiento es anticiclónico reciben frecuentemente el nombre de anticiclones.

3. Baja presión, circulación ciclónica: R > 0 y dP/dx < 0. Es posible, puesto que la fuerza del gradiente de presión apunta hacia adentro. La fuerza del gradiente de presión debe ser mayor que la de Coriolis para que el movimiento ciclónico sea posible. Esta es la situación real que se da en las bajas presiones terrestres (de ahí que se las llame frecuentemente ciclones).

4. Baja presión, circulación anticiclónica: R < 0 y dP/dx > 0. Es posible, puesto que tanto la fuerza de Coriolis como la del gradiente de presión apuntan hacia adentro. No obstante, esta es un situación que no se encuentra en la naturaleza a gran escala (sinóptica) debido a que la fuerza de Coriolis tiende a generar una circulación ciclónica en torno a una baja presión (véase el primer esquema del artículo).

Comparación con el viento geostrófico

Se deduce que, a partir de los mismos datos, la fórmula del viento del gradiente produce un viento más rápido para las situaciones anticiclónicas mientras que es más lento que el geostrófico para las situaciones ciclónicas (normales). Esta diferencia no suele exceder del 10-20%.

Aplicaciones

El viento del gradiente tiene una mayor precisión que el geostrófico por lo que, cuando la capacidad de cálculo no es un problema, constituye la mejor opción.

El viento del gradiente reproduce un hecho observado en los sistemas reales: en el centro de los anticiclones el gradiente de presión y los vientos son muy pequeños y tienden a crecer en los bordes, aunque nunca llegan a tener grandes valores. Esto se explica fácilmente porque la fuerza producida por el gradiente de presión va hacia el fuera del anticiclón, con lo cual el viento no puede ser muy rápido, de otro modo Coriolis tendría que contrarrestar él solo el gradiente de presión y, además, generar la fuerza centrípeta.

Limitaciones

Aunque el viento del gradiente puede aplicarse a cualquier circunstancia siempre y cuando se cumplan las condiciones, a veces es más práctico pasar a ciertas aproximaciones que facilitan el cálculo sin que se pierda mucha precisión por el camino:

  • Aunque el viento del gradiente arroja resultados más parecidos a los reales en el caso de la circulación ciclónica, resulta menos preciso que el geostrófico con circulación anticiclónica.
  • La diferencia entre el viento geostrófico y el del gradiente es sólo de un 10-20%, lo que a veces no justifica el uso de este último por su mayor complejidad.
  • En el caso de tornados, es más sencillo aplicar la fórmula del viento ciclostrófico ya que allí la fuerza de Coriolis puede despreciarse frente a la del gradiente de presión y la fuerza centrípeta.
  • En cambio, en el caso de las corrientes marinas, es más sencillo aplicar la fórmula del flujo inercial, ya que se puede despreciar el gradiente de presión frente a Coriolis y la fuerza centrípeta.

Al igual que el viento geostrófico, se considera que las fuerzas de rozamiento son pequeñas. Esto constituye una buena aproximación en la atmósfera libre pero pésima en la superficie terrestre, donde sí son importantes. Esto hace que el flujo observado en tierra sea más lento que el predicho por el viento del gradiente y que no se equilibren del todo la aceleración centríepta, Coriolis y el gradiente de presión. Como resultado, existe una importante componente del viento hacia el interior en las bajas presiones y una componente hacia afuera en los anticiclones.

Al igual que el viento geostrófico, su fórmula tiende a dar un error considerable si se aplica cerca del ecuador debido a que el parámetro de Coriolis tiende allí a cero.

Véase también

Fuente

  • "An introduction to dynamic meteorology", James R. HOLTON, Academic Press, San Diego, 1992, ISBN 978-0-12-354355-4

Wikimedia foundation. 2010.

Игры ⚽ Нужен реферат?

Mira otros diccionarios:

  • Viento geostrófico — En el viento geostrófico se supone que las isobaras son rectas. En él el gradiente de presión equilibra exactamente la fuerza de Coriolis. El viento geostrófico es una aproximación física al viento real. En él se considera que existe un… …   Wikipedia Español

  • Viento — Para otros usos de este término, véase Instrumento de viento y Viento solar. Típica alegoría al viento, de Yakovlev Shalyapin …   Wikipedia Español

  • Viento térmico — Si existen diferencias de temperatura entre dos masas de aire, el viento geostrófico varía con la altura. Se puede suponer que el viento geostrófico en altura (Vg2 y Vg3) es la suma del viento geostrófico de la base (Vg1) y un viento térmico . El …   Wikipedia Español

  • Captador de viento — Un ab anbar con doble cúpula y captadores de viento en el desierto. Ciudad de Naeen, cercano a Yazd. Un captador de viento (Bâdgir:ملقف) es un dispositivo arquitectónico de tradición Persa utilizado durante muchos siglos para proveer de… …   Wikipedia Español

  • Parque Natural del Delta del Ebro — Saltar a navegación, búsqueda Vista por satélite del Delta …   Wikipedia Español

  • Locomotora del LNER Clase A4 Nº 4468 "Mallard" — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Flujo ciclostrófico — Saltar a navegación, búsqueda En el flujo ciclostrófico se considera que toda la aceleración centrípeta (verde) viene generada por el gradiente de presión, sin que intervengan otras fuerzas en el movimiento (azul). Debido a esto el flujo puede… …   Wikipedia Español

  • Fuerzas báricas — Sobre esta carta de isobaras, del 11/3/2008 por la agencia estatal española de meteorología, se ha dibujado una flecha negra que indica la dirección de las fuerzas debidas al gradiente barométrico o de presiones. La presión atmosférica de cada… …   Wikipedia Español

  • Flujo inercial — Saltar a navegación, búsqueda El flujo inercial es una aproximación física a los vientos y corrientes oceánicas reales. En él se considera que la aceleración tangencial y la fuerza del gradiente de presión son nulas. También se considera que las… …   Wikipedia Español

  • Física de la atmósfera — Es la rama de la física que estudia la atmósfera, y los fenómenos que en ella ocurren. La física de la atmósfera utiliza modelos de la Atmósfera terrestre, física de fluidos, balances energéticos de radiación y procesos de transferencia de… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”