Grupo puntual

Grupo puntual
La flor Bauhinia blakeana representada en la bandera de Hong Kong tiene simetría C5; la estrella interior de cada pétalo tiene simetría D5.

En geometría y cristalografía, un grupo puntual es un grupo de simetrías geométricas (grupo de isometría) que mantiene constante por lo menos un punto fijo. Los grupos puntuales pueden existir en un espacio euclidiano de cualquier otra dimensión, y cada grupo puntual en la dimensión d es un subgrupo del grupo ortogonal O(d). Los grupos puntuales pueden ser considerados como un conjunto de matrices ortogonales M que transforman un punto x en un punto y:

y= M.x

donde el origen es el punto fijo. Los elementos de los grupos puntuales pueden ser: rotaciones (determinante de M= 1) rotaciones impropias, reflexiones, rotaciones-reflexiones, o rotoreflexiones (determinante de M= -1). Todos los grupos puntuales de las rotaciones de dimensión d son subgrupos del grupo ortogonal especial SO(d).

Los grupos puntuales discretos en más de una dimensión se agrupan en familias infinitas, pero por el teorema de restricción cristalográfica y por uno de los teoremas de Bieberbach, cada número de dimensiones sólo tiene un número finito de grupos puntuales que son simétricos respecto de una red o retícula con ese número de dimensiones. Estos son los grupos puntuales cristalográficos.

Contenido

Una dimensión

Sólo hay dos grupos puntuales unidimensionales, el grupo identidad y el grupo reflexión.

Grupo Coxeter Diagrama de Coxeter Orden Descripción
C1 [ ]+ 1 Identidad
D1 [ ] CDel node.png 2 Grupo reflexión

Dos dimensiones

Los grupos puntuales planos son a veces llamados grupos de roseta.

Se agrupan en dos familias infinitas:

  1. Grupos cíclicos Cn o grupos de rotación de orden n
  2. Grupos diedral Dn de rotación de orden n y grupos de reflexión.

Aplicando el teorema de restricción cristalográfica n queda limitado a los valores 1, 2, 3, 4 y 6 para ambas familias, produciendo 10 grupos.

Grupo Intl Orbifold Coxeter Orden Descripción
Cn n nn [n]+ n Cíclico: rotaciones de orden n. Extraer el grupo Zn, el grupo de los enteros bajo la adición módulo n.
Dn nm *nn [n] 2n Diedral: cíclico con reflexiones. Extraer el grupo Dihn, el grupo diedral.

El subconjunto de grupos puntuales de reflexión pura, se define por uno o dos ejes de simetría, también se puede dar por su grupo de Coxeter y polígonos relacionados. Estos incluyen cinco grupos cristalográficos.

Grup0 Coxeter group Diagrama de Coxeter Orden Polígonos relacionados
D3 A2 [3] CDel node.pngCDel 3.pngCDel node.png 6 Triángulo equilátero
D4 BC2 [4] CDel node.pngCDel 4.pngCDel node.png 8 Cuadrado
D5 H2 [5] CDel node.pngCDel 5.pngCDel node.png 10 Pentágono regular
D6 G2 [6] CDel node.pngCDel 6.pngCDel node.png 12 Hexágono regular
Dn I2(n) [n] CDel node.pngCDel n.pngCDel node.png 2n Polígono regular
D2n I2(2n) [[n]]=[2n] CDel node.pngCDel 2x.pngCDel n.pngCDel node.png 4n Polígono regular
D2 A12 [2] CDel node.pngCDel 2.pngCDel node.png 4 Rectángulo
D1 A1 [ ] CDel node.png 2 Dígono

Tres dimensiones

Los grupos puntuales tridimensionales son a veces llamados grupos puntuales moleculares por su amplio uso en el estudio de las simetrías de las moléculas pequeñas.

Se agrupan en siete familias infinitas de grupos axiales o prismáticos, y 7 grupos poliédricos adicionales o grupos platónicos. En notación de Schönflies,

  • Los grupos axiales: Cn, S2n, Cnh, Cnv, Dn, Dnd, Dnh
  • Grupos poliédricos: T, Td, Th, O, Oh, I, Ih

Aplicando el teorema de restricción cristalográfica a estos grupos se obtienen los 32 grupos puntuales cristalográficos.

Intl* Geo
[1]
Orbifold Schönflies Conway Coxeter Orden
1 1 1 C1 C1 [ ]+ 1
1 22 ×1 Ci = S2 CC2 [2+,2+] 2
2 = m 1 *1 Cs = C1v = C1h ±C1 = CD2 [ ] 2
2
3
4
5
6
n
2
3
4
5
6
n
22
33
44
55
66
nn
C2
C3
C4
C5
C6
Cn
C2
C3
C4
C5
C6
Cn
[2]+
[3]+
[4]+
[5]+
[6]+
[n]+
2
3
4
5
6
n
2mm
3m
4mm
5m
6mm
nmm
nm
2
3
4
5
6
n
*22
*33
*44
*55
*66
*nn
C2v
C3v
C4v
C5v
C6v
Cnv
CD4
CD6
CD8
CD10
CD12
CD2n
[2]
[3]
[4]
[5]
[6]
[n]
4
6
8
10
12
2n
2/m
3/m
4/m
5/m
6/m
n/m
2 2
3 2
4 2
5 2
6 2
n 2
2*
3*
4*
5*
6*
n*
C2h
C3h
C4h
C5h
C6h
Cnh
±C2
CC6
±C4
CC10
±C6
±Cn / CC2n
[2,2+]
[2,3+]
[2,4+]
[2,5+]
[2,6+]
[2,n+]
4
6
8
10
12
2n
4
3
8
5
12
2n
n
4 2
6 2
8 2
10 2
12 2
2n 2





S4
S6
S8
S10
S12
S2n
CC4
±C3
CC8
±C5
CC12
CC2n / ±Cn
[2+,4+]
[2+,6+]
[2+,8+]
[2+,10+]
[2+,12+]
[2+,2n+]
4
6
8
10
12
2n
Intl* Geo
[1]
Orbifold Schönflies Conway Coxeter Orden
222
32
422
52
622
n22
n2
2 2
3 2
4 2
5 2
6 2
n 2
222
223
224
225
226
22n
D2
D3
D4
D5
D6
Dn
D4
D6
D8
D10
D12
D2n
[2,2]+
[2,3]+
[2,4]+
[2,5]+
[2,6]+
[2,n]+
4
6
8
10
12
2n
mmm
6m2
4/mmm
10m2
6/mmm
n/mmm
2nm2
2 2
3 2
4 2
5 2
6 2
n 2
*222
*223
*224
*225
*226
*22n
D2h
D3h
D4h
D5h
D6h
Dnh
±D4
DD12
±D8
DD20
±D12
±D2n / DD4n
[2,2]
[2,3]
[2,4]
[2,5]
[2,6]
[2,n]
8
12
16
20
24
4n
42m
3m
82m
5m
122m
2n2m
nm
4 2
6 2
8 2
10 2
12 2
n 2
2*2
2*3
2*4
2*5
2*6
2*n
D2d
D3d
D4d
D5d
D6d
Dnd
±D4
±D6
DD16
±D10
DD24
DD4n / ±D2n
[2+,4]
[2+,6]
[2+,8]
[2+,10]
[2+,12]
[2+,2n]
8
12
16
20
24
4n
23 3 3 332 T T [3,3]+ 12
m3 4 3 3*2 Th ±T [3+,4] 24
43m 3 3 *332 Td TO [3,3] 24
432 4 3 432 O O [3,4]+ 24
m3m 4 3 *432 Oh ±O [3,4] 48
532 5 3 532 I I [3,5]+ 60
53m 5 3 *532 Ih ±I [3,5] 120
(*) Cuando el símbolo en la columna Intl aparece duplicado, el primero es para n par, el segundo para n impar.

El subconjunto de grupos puntuales de reflexión pura, definido por 1 a 3 planos de simetría, también se puede dar por su grupo de Coxeter y poliedros relacionados. El grupo [3,3] se puede doblar, notándose como [[3,3]], haciendo coincidir los ejes primero y último uno sobre el otro, duplicando la simetría a orden 48, y resultando isomorfo con el grupo [4,3].

Schönflies Grupo de Coxeter Diagrama de Coxeter Orden Poliedro regular y prismático relacionado
Td A3 [3,3] CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 24 Tetraedro
Oh BC3 [4,3]
=[[3,3]]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel split1.pngCDel nodes.png
48 Cubo, octaedro
Octaedro estrellado
Ih H3 [5,3] CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png 120 Icosaedro, dodecaedro
D3h A2×A1 [3,2] CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png 12 Prisma triangular
D4h BC2×A1 [4,2] CDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.png 16 Prisma cuadrado
D5h H2×A1 [5,2] CDel node.pngCDel 5.pngCDel node.pngCDel 2.pngCDel node.png 20 Prisma pentagonal
D6h G2×A1 [6,2] CDel node.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node.png 24 Prisma hexagonal
Dnh I2(n)×A1 [n,2] CDel node.pngCDel n.pngCDel node.pngCDel 2.pngCDel node.png 4n Prisma n-gonal
D2h A13 [2,2] CDel node.pngCDel 2.pngCDel node.pngCDel 2.pngCDel node.png 8 Cuboide
C3v A2×A1 [3] CDel node.pngCDel 3.pngCDel node.png 6 Hosoedro
C4v BC2×A1 [4] CDel node.pngCDel 4.pngCDel node.png 8
C5v H2×A1 [5] CDel node.pngCDel 5.pngCDel node.png 10
C6v G2×A1 [6] CDel node.pngCDel 6.pngCDel node.png 12
Cnv I2(n)×A1 [n] CDel node.pngCDel n.pngCDel node.png 2n
C2v A12 [2] CDel node.pngCDel 2.pngCDel node.png 4
Cs A1 [ ] CDel node.png 2

Véase también

  • Grupos puntuales bidimensionales
  • Grupos puntuales tridimensionales
  • Cristalografía
  • Grupo puntual cristalográfico
  • Simetría molecular
  • Grupo espacial
  • Difracción de rayos X
  • Red de Bravais

Notas

  1. a b The Crystallographic Space groups in Geometric algebra, D. Hestenes and J. Holt, Journal of Mathematical Physics. 48, 023514 (2007) (22 pages) PDF [1]

Referencias

  • Los grupos puntuales. En: Teoría de grupos aplicada para químicos, físicos e ingenieros. Allen Nussbaum. Editorial Reverté, 1975. ISBN: 842914109X.
  • H.S.M. Coxeter: Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • H.S.M. Coxeter and W. O. J. Moser. Generators and Relations for Discrete Groups 4th ed, Springer-Verlag. New York. 1980
  • N.W. Johnson: Geometries and Transformations, Manuscript, (2011) Chapter 11: Finite symmetry groups

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Поможем сделать НИР

Mira otros diccionarios:

  • Grupo de isometría — El grupo de isometría de un conjunto está formado por todas las transformaciones geométricas formado por traslaciones, rotaciones y reflexiones que no alteran las distancias de un conjunto. En un grupo de isometría, la operación de grupo viene… …   Wikipedia Español

  • Grupo discreto — En matemáticas, un grupo discreto es un grupo G, provisto con una topología discreta. Con esta topología G se convierte en un grupo topológico. Un subgrupo discreto de un grupo topológico G es un subgrupo H, cuya topología relativa es discreta.… …   Wikipedia Español

  • Grupo SAS — SAS AB Tipo Sociedad anónima Fundación 1946, fusión de ABA (1924), DDL (1918) y DNL (1927) Sede Estocolmo (Suecia) …   Wikipedia Español

  • Dani (grupo étnico) — Hombre de la tribu dani en el valle de Baliem. La etnia dani, también conocida como ndani y, a veces, confundida con la etnia lani del oeste, es una tribu del oeste de Nueva Guinea en la provincia de Papúa (antes conocida como Irian Jaya). Se… …   Wikipedia Español

  • Simetría molecular — Simetría del agua. En química, la simetría molecular describe la simetría de las moléculas y utiliza este criterio para su clasificación. La simetría molecular es un concepto fundamental en química, pues muchas de las propiedades químicas de una… …   Wikipedia Español

  • Trióxido de cromo — Trióxido de cromo …   Wikipedia Español

  • Método de orbitales moleculares como una combinación lineal de orbitales atómicos — Una Combinación Lineal de Orbitales Atómicos o CLOA es una superposición cuántica de orbitales atómicos y una técnica para calcular orbitales moleculares en química cuántica.[1] En mecánica cuántica, las configuraciones electrónicas de átomos son …   Wikipedia Español

  • Geometría molecular trigonal plana — Estructura idealizada de un compuesto de coordinación con geometría trigonal plana En química, la geometría molecular trigonal plana es un tipo de geometría molecular con un átomo en el centro y tres átomos en las esquinas de un triángulo,… …   Wikipedia Español

  • Geometría molecular bipiramidal pentagonal — Estructura idealizada de una molécula de coordinación con una geometría molecular bipiramidal pentagonal En química, la geometría molecular bipiramidal pentagonal es un tipo de geometría molecular con un átomo central unido mediante enlaces… …   Wikipedia Español

  • Geometría molecular piramidal trigonal — En química, la geometría molecular piramidal trigonal es un tipo de geometría molecular con un átomo en el vértice superior y tres átomos en las esquinas de un triángulo, en un plano inferior. Cuando los tres átomos en las esquinas son iguales,… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”