Carbono

Carbono
BoroCarbonoNitrógeno
-
  Hexagonal.svg
 
6
C
 
               
               
                                   
                                   
                                                               
                                                               

C

Si
Tabla completa • Tabla extendida
Apariencia
Negro (grafito)
Incoloro (diamante)
Diamond and graphite2.jpg
C,6.jpg
Información general
Nombre, símbolo, número Carbono, C, 6
Serie química No metal
Grupo, período, bloque 14, 2, p
Masa atómica 12,0107(8) u
Configuración electrónica [He]2s22p2
Dureza Mohs 1-2 (grafito)
10 (diamante)
Electrones por nivel 2, 4
Propiedades atómicas
Radio medio 70 pm
Electronegatividad 2,55 (Pauling)
Radio atómico (calc) 67 pm (Radio de Bohr)
Radio iónico {{{radio_iónico}}}
Radio covalente 77 pm
Radio de van der Waals 170 pm
Estado(s) de oxidación 4, 2
Óxido Ácido débil
1.ª Energía de ionización 1086,5 kJ/mol
2.ª Energía de ionización 2352,6 kJ/mol
3.ª Energía de ionización 4620,5 kJ/mol
4.ª Energía de ionización 6222,7 kJ/mol
5.ª Energía de ionización 37 831,1 kJ/mol
6.ª Energía de ionización 47 277,1 kJ/mol
7.ª Energía de ionización {{{E_ionización7}}} kJ/mol
8.ª Energía de ionización {{{E_ionización8}}} kJ/mol
9.ª Energía de ionización {{{E_ionización9}}} kJ/mol
10.ª Energía de ionización {{{E_ionización10}}} kJ/mol
Propiedades físicas
Estado ordinario Sólido (no magnético)
Densidad 2267 kg/m3
Punto de fusión Diamante: 3823 K
Grafito: 3800 K
Punto de ebullición Grafito: 5100 K
Punto de inflamabilidad {{{P_inflamabilidad}}} K
Entalpía de vaporización Grafito; sublima: 711 kJ/mol
Entalpía de fusión Grafito; sublima: 105 kJ/mol
Presión de vapor
Temperatura crítica {{{T_crítica}}} K
Presión crítica {{{P_crítica}}} Pa
Volumen molar m3/mol
Varios
Estructura cristalina hexagonal
N° CAS 7440-44-0
N° EINECS 231-153-3
Calor específico 710 J/(K·kg)
Conductividad eléctrica 61×103 S/m
Conductividad térmica 129 W/(K·m)
Velocidad del sonido Diamante: 18.350 m/s a 293.15 K (20 °C)
Isótopos más estables
iso AN Periodo MD Ed PD
MeV
12C 98,9 % Estable con 6 neutrones
13C 1,1 % Estable con 7 neutrones
14C trazas 5730 años β 0,156 14N
Nota: unidades según el SI y en CNPT, salvo indicación contraria.

El carbono es un elemento químico de número atómico 6 y símbolo C. Es sólido a temperatura ambiente. Dependiendo de las condiciones de formación, puede encontrarse en la naturaleza en distintas formas alotrópicas, carbono amorfo y cristalino en forma de grafito o diamante. Es el pilar básico de la química orgánica; se conocen cerca de 16 millones de compuestos de carbono, aumentando este número en unos 500.000 compuestos por año, y forma parte de todos los seres vivos conocidos. Forma el 0,2 % de la corteza terrestre.

Contenido

Características

El carbono es un elemento notable por varias razones. Sus formas alotrópicas incluyen, sorprendentemente, una de las sustancias más blandas (el grafito) y la más dura (el diamante) y, desde el punto de vista económico, uno de los materiales más baratos (carbón) y uno de los más caros (diamante). Más aún, presenta una gran afinidad para enlazarse químicamente con otros átomos pequeños, incluyendo otros átomos de carbono con los que puede formar largas cadenas, y su pequeño radio atómico le permite formar enlaces múltiples. Así, con el oxígeno forma el óxido de carbono (IV), vital para el crecimiento de las plantas (ver ciclo del carbono); con el hidrógeno forma numerosos compuestos denominados genéricamente hidrocarburos, esenciales para la industria y el transporte en la forma de combustibles fósiles; y combinado con oxígeno e hidrógeno forma gran variedad de compuestos como, por ejemplo, los ácidos grasos, esenciales para la vida, y los ésteres que dan sabor a las frutas; además es vector, a través del ciclo carbono-nitrógeno, de parte de la energía producida por el Sol.[1]

Estados alotrópicos

Artículo principal: Alótropos del carbono
Cristales de fulerenos

Se conocen cinco formas alotrópicas del carbono, además del amorfo: grafito, diamante, fulerenos, nanotubos y carbinos.[2]

Una de las formas en que se encuentra el carbono es el grafito, que es el material del cual está hecha la parte interior de los lápices de madera. El grafito tiene exactamente los mismos átomos del diamante, pero por estar dispuestos en diferente forma, su textura, fuerza y color son diferentes. Los diamantes naturales se forman en lugares donde el carbono ha sido sometido a grandes presiones y altas temperaturas. Los diamantes se pueden crear artificialmente, sometiendo el grafito a temperaturas y presiones muy altas. Su precio es menor al de los diamantes naturales, pero si se han elaborado adecuadamente tienen la misma fuerza, color y transparencia.

El 22 de marzo de 2004 se anunció el descubrimiento de una sexta forma alotrópica: las nanoespumas.[3]

La forma amorfa es esencialmente grafito, pero no llega a adoptar una estructura cristalina macroscópica. Esta es la forma presente en la mayoría de los carbones y en el hollín.

Disposición geométrica de los orbitales híbridos sp.
Disposición geométrica de los orbitales híbridos sp2.

A presión normal, el carbono adopta la forma del grafito, en la que cada átomo está unido a otros tres en un plano compuesto de celdas hexagonales; este estado se puede describir como 3 electrones de valencia en orbitales híbridos planos sp2 y el cuarto en el orbital p.

Las dos formas de grafito conocidas alfa (hexagonal) y beta (romboédrica) tienen propiedades físicas idénticas. Los grafitos naturales contienen más del 30% de la forma beta, mientras que el grafito sintético contiene únicamente la forma alfa. La forma alfa puede transformarse en beta mediante procedimientos mecánicos, y ésta recristalizar en forma alfa al calentarse por encima de 1000 °C.

Debido a la deslocalización de los electrones del orbital pi, el grafito es conductor de la electricidad, propiedad que permite su uso en procesos de electroerosión. El material es blando y las diferentes capas, a menudo separadas por átomos intercalados, se encuentran unidas por enlaces de Van de Waals, siendo relativamente fácil que unas deslicen respecto de otras, lo que le da utilidad como lubricante.

Disposición geométrica de los orbitales híbridos sp3.

A muy altas presiones, el carbono adopta la forma del diamante, en el cual cada átomo está unido a otros cuatro átomos de carbono, encontrándose los 4 electrones en orbitales sp3, como en los hidrocarburos. El diamante presenta la misma estructura cúbica que el silicio y el germanio y, gracias a la resistencia del enlace químico carbono-carbono, es, junto con el nitruro de boro, la sustancia más dura conocida. La transición a grafito a temperatura ambiente es tan lenta que es indetectable. Bajo ciertas condiciones, el carbono cristaliza como lonsdaleíta, una forma similar al diamante pero hexagonal.

El orbital híbrido sp1 que forma enlaces covalentes sólo es de interés en química, manifestándose en algunos compuestos, como por ejemplo el acetileno.

Fulereno C60.

Los fulerenos tienen una estructura similar al grafito, pero el empaquetamiento hexagonal se combina con pentágonos (y en ciertos casos, heptágonos), lo que curva los planos y permite la aparición de estructuras de forma esférica, elipsoidal o cilíndrica. El constituido por 60 átomos de carbono, que presenta una estructura tridimensional y geometría similar a un balón de fútbol, es especialmente estable. Los fulerenos en general, y los derivados del C60 en particular, son objeto de intensa investigación en química desde su descubrimiento a mediados de los 1980.

A esta familia pertenecen también los nanotubos de carbono, que pueden describirse como capas de grafito enrolladas en forma cilíndrica y rematadas en sus extremos por hemiesferas (fulerenos), y que constituyen uno de los primeros productos industriales de la nanotecnología.

Aplicaciones

El principal uso industrial del carbono es como componente de hidrocarburos, especialmente los combustibles fósiles (petróleo y gas natural). Del primero se obtienen, por destilación en las refinerías, gasolinas, queroseno y aceites, siendo además la materia prima empleada en la obtención de plásticos. El segundo se está imponiendo como fuente de energía por su combustión más limpia. Otros usos son:

  • El isótopo radiactivo carbono-14, descubierto el 27 de febrero de 1940, se usa en la datación radiométrica.
  • El grafito se combina con arcilla para fabricar las minas de los lápices. Además se utiliza como aditivo en lubricantes. Las pinturas anti-radar utilizadas en el camuflaje de vehículos y aviones militares están basadas igualmente en el grafito, intercalando otros compuestos químicos entre sus capas. Es negro y blando. Sus átomos están distribuidos en capas paralelas muy separadas entre sí. Se forma a menos presión que el diamante. Aunque parezca difícil de creer, un diamante y la mina de un lapicero tienen la misma composición química: carbono.
  • El diamante Es transparente y muy duro. En su formación, cada átomo de carbono está unido de forma compacta a otros cuatro átomos. Se originan con temperaturas y presiones altas en el interior de la tierra. Se emplea para la construcción de joyas y como material de corte aprovechando su dureza.
  • Como elemento de aleación principal de los aceros.
  • En varillas de protección de reactores nucleares.
  • Las pastillas de carbón se emplean en medicina para absorber las toxinas del sistema digestivo y como remedio de la flatulencia.
  • El carbón activado se emplea en sistemas de filtrado y purificación de agua.
  • El carbón amorfo ("hollín") se añade a la goma para mejorar sus propiedades mecánicas. Además se emplea en la formación de electrodos (p. ej. de las baterías). Obtenido por sublimación del grafito, es fuente de los fulerenos que pueden ser extraídos con disolventes orgánicos.
  • La fibra de carbono (obtenido generalmente por termólisis de fibras de poliacrilato) se añade a resinas de poliéster, donde mejoran mucho la resistencia mecánica sin aumentar el peso, obteniéndose los materiales denominados fibras de carbono.
  • Las propiedades químicas y estructurales de los fulerenos, en la forma de nanotubos, prometen usos futuros en el incipiente campo de la nanotecnología.

Historia

El carbón (del latín carbo -ōnis, "carbón") fue descubierto en la prehistoria y ya era conocido en la antigüedad en la que se manufacturaba mediante la combustión incompleta de materiales orgánicos. Los últimos alótropos conocidos, los fullerenos (C60), fueron descubiertos como subproducto en experimentos realizados con gases moleculares en la década de los 80.

Newton, en 1704, intuyó que el diamante podía ser combustible, pero no se consiguió quemar un diamante hasta 1772 en que Lavoisier demostró que en la reacción de combustión se producía CO2.

Tennant demostró que el diamante era carbono puro en 1797. El isótopo más común del carbono es el 12C; en 1961 este isótopo se eligió para reemplazar al isótopo oxígeno-16 como base de los pesos atómicos, y se le asignó un peso atómico de 12.

Los primeros compuestos de carbono se identificaron en la materia viva a principios del siglo XIX, y por ello el estudio de los compuestos de carbono se llamó química orgánica.

Abundancia y obtención

El carbono no se creó durante el Big Bang porque hubiera necesitado la triple colisión de partículas alfa (núcleos atómicos de helio) y el Universo se expandió y enfrió demasiado rápido para que la probabilidad de que ello aconteciera fuera significativa. Donde sí ocurre este proceso es en el interior de las estrellas (en la fase RH (Rama horizontal)) donde este elemento es abundante, encontrándose además en otros cuerpos celestes como los cometas y en las atmósferas de los planetas. Algunos meteoritos contiene diamantes microscópicos que se formaron cuando el Sistema Solar era aún un disco protoplanetario.

En combinaciones con otros elementos, el carbono se encuentra en la atmósfera terrestre y disuelto en el agua, y acompañado de menores cantidades de calcio, magnesio y hierro forma enormes masas rocosas (caliza, dolomita, mármol, etc).

El grafito se encuentra en grandes cantidades en Estados Unidos, Rusia, México, Groenlandia y la India.

Los diamantes naturales se encuentran asociados a rocas volcánicas (kimberlita y lamproita). Los mayores depósitos de diamantes se encuentran en el África (Sudáfrica, Namibia, Botsuana, República del Congo y Sierra Leona).[cita requerida] Existen además depósitos importantes en Canadá, Rusia, Brasil y Australia.[cita requerida]

Compuestos inorgánicos

El más importante óxido de carbono es el dióxido de carbono (CO2), un componente minoritario de la atmósfera terrestre (del orden del 0,04% en peso) producido y usado por los seres vivos (ver ciclo del carbono). En el agua forma trazas de ácido carbónico (H2CO3) —las burbujas de muchos refrescos— pero, al igual que otros compuestos similares, es inestable, aunque a través de él pueden producirse iones carbonato estables por resonancia. Algunos minerales importantes, como la calcita, son carbonatos.

Los otros óxidos son el monóxido de carbono (CO) y el más raro subóxido de carbono (C3O2). El monóxido se forma durante la combustión incompleta de materias orgánicas y es incoloro e inodoro. Dado que la molécula de CO contiene un enlace triple, es muy polar, por lo que manifiesta una acusada tendencia a unirse a la hemoglobina, formando un nuevo compuesto muy peligroso denominado Carboxihemoglobina, impidiéndoselo al oxígeno, por lo que se dice que es un asfixiante de sustitución. El ion cianuro (CN), tiene una estructura similar y se comporta como los iones haluro.

Con metales, el carbono forma tanto carburos como acetiluros, ambos muy ácidos. A pesar de tener una electronegatividad alta, el carbono puede formar carburos covalentes como es el caso de carburo de silicio (SiC) cuyas propiedades se asemejan a las del diamante.

Véase también: Química orgánica

Isótopos

Artículo principal: Isótopos del carbono

En 1961 la IUPAC adoptó el isótopo 12C como la base para la masa atómica de los elementos químicos.

El carbono-14 es un radioisótopo con un periodo de semidesintegración de 5730 años que se emplea de forma extensiva en la datación de especímenes orgánicos.

Los isótopos naturales y estables del carbono son el 12C (98,89%) y el 13C (1,11%). Las proporciones de estos isótopos en un ser vivo se expresan en variación (±‰) respecto de la referencia VPDB (Vienna Pee Dee Belemnite, fósiles cretácicos de belemnites, en Carolina del Sur). El δC-13 del CO2 de la atmósfera terrestre es −7‰. El carbono fijado por fotosíntesis en los tejidos de las plantas es significativamente más pobre en 13C que el CO2 de la atmósfera.

La mayoría de las plantas presentan valores de δC-13 entre −24 y −34‰. Otras plantas acuáticas, de desierto, de marismas saladas y hierbas tropicales, presentan valores de δC-13 entre −6 y −19‰ debido a diferencias en la reacción de fotosíntesis. Un tercer grupo intermedio constituido por las algas y líquenes presentan valores entre −12 y −23‰. El estudio comparativo de los valores de δC-13 en plantas y organismos puede proporcionar información valiosa relativa a la cadena alimenticia de los seres vivos.

Precauciones

Los compuestos de carbono tienen un amplio rango de toxicidad. El monóxido de carbono, presente en los gases de escape de los motores de combustión y el cianuro (CN) son extremadamente tóxicos para los mamíferos, entre ellos las personas. Los gases orgánicos eteno, etino y metano son explosivos e inflamables en presencia de aire. Por el contrario, muchos otros compuestos no son tóxicos sino esenciales para la vida.

Véase también

Referencias

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Нужен реферат?
Sinónimos:

Mira otros diccionarios:

  • Carbono-12 — Saltar a navegación, búsqueda Carbono 12 Tabla completa General Nombre, símbolo Carbono 12, 12C Neutrones 6 …   Wikipedia Español

  • Carbono-14 — Tabla completa General Nombre, símbolo Carbono 14, 14C Neutrones 8 Protones 6 Datos del nucleido …   Wikipedia Español

  • carbono — m. bioquím. Bioelemento primario de los seres vivos que representa el 20% del total de los elementos de un organismo. El carbono proporciona una serie de propiedades muy especiales: tiene una gran capacidad de formar moléculas lineales,… …   Diccionario médico

  • carbono — sustantivo masculino 1. Área: química (no contable) C Elemento químico no metálico, muy abundante en la naturaleza, que en estado puro se presenta como diamante o grafito y es, además, elemento constitutivo de las moléculas orgánicas. Locuciones… …   Diccionario Salamanca de la Lengua Española

  • carbono — (Del lat. carbo, ōnis, carbón). m. Elemento químico de núm. atóm. 6. Es extraordinariamente abundante en la naturaleza, tanto en los seres vivos como en el mundo mineral y en la atmósfera. Se presenta en varias formas alotrópicas, como el… …   Diccionario de la lengua española

  • carbono 11 — Radioisótopo del carbono con una vida media de 20 minutos. Se produce mediante un ciclotrón y emite positrones. Diccionario Mosby Medicina, Enfermería y Ciencias de la Salud, Ediciones Hancourt, S.A. 1999 …   Diccionario médico

  • carbono 14 — Emisor beta con una vida media de 5.760 años. Se produce de forma natural, originándose a partir de los rayos cósmicos, y se utiliza como marcador en el estudio de distintos aspectos del metabolismo y para calcular la edad de restos que contienen …   Diccionario médico

  • carbono — |ó| s. m. [Química] Elemento químico (símbolo C), de número atômico 6, de massa atômica 12,01, que se encontra, mais ou menos puro, na natureza, quer cristalizado (diamante, grafite), quer amorfo (carvão de pedra, hulha, antracite, lignite).… …   Dicionário da Língua Portuguesa

  • Carbono — ► sustantivo masculino QUÍMICA Cuerpo simple no metal que se encuentra en la naturaleza en los compuestos orgánicos y carbones. * * * carbono (del lat. «carbo, ōnis», carbón) m. *Elemento químico no metálico, n.º atómico 6, sólido, componente… …   Enciclopedia Universal

  • Carbono-13 — «13C» redirige aquí. Para el canal de televisión chileno, véase 13C (Chile). Carbono 13 Tabla completa General Nombre, símbolo Carbono 13, 13C Neutrones 7 Protones …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”