Fuerza intermolecular

Fuerza intermolecular

Las fuerzas intermoleculares, fuerzas de atracción entre moléculas a veces también reciben el nombre de enlaces intermoleculares aunque son considerablemente más débiles que los enlaces iónicos, covalentes y metálicos. Las principales fuerzas intermoleculares son

  • El enlace de hidrógeno (antiguamente conocido como puente de hidrógeno)
  • las fuerzas de Van der Waals. Que podemos clasificar a su vez en:
    • Dipolo - Dipolo.
    • Dipolo - Dipolo inducido.
    • Fuerzas de dispersión de London.

Contenido

Enlace de hidrógeno

Artículo principal: Enlace por puente de hidrógeno

Hydrogen-bonding-in-water-2D.png

El enlace de hidrógeno ocurre cuando un átomo de hidrógeno es enlazado a un átomo fuertemente electronegativo como el nitrógeno, el oxígeno o el flúor.[1] El átomo de hidrógeno posee una carga positiva parcial y puede interactuar con otros átomos electronegativos en otra molécula (nuevamente, con N, O o F). Así mismo, se produce un cierto solapamiento entre el H y el átomo con que se enlaza (N, O o F) dado el pequeño tamaño de estas especies. Por otra parte, cuanto mayor sea la diferencia de electronegatividad entre el H y el átomo interactuante, más fuerte será el enlace. Fruto de estos presupuestos obtenemos un orden creciente de intensidad del enlace de hidrógeno: el formado con el F será de mayor intensidad que el formado con el O, y éste a su vez será más intenso que el formado con el N. Estos fenómenos resultan en una interacción estabilizante que mantiene ambas moléculas unidas. Un ejemplo claro del enlace de hidrógeno es el agua:

Los enlaces de hidrógeno se encuentran en toda la naturaleza. Proveen al agua de sus propiedades particulares, las cuales permiten el desarrollo de la vida en la Tierra. Los enlaces de hidrógeno proveen también la fuerza intermolecular que mantiene unidas ambas hebras en una molécula de ADN.

Es un tipo especial de interacción dipolo-dipolo entre el átomo de hidrógeno que está formando un enlace polar, tal como N—H, O—H, ó F—H, y un átomo electronegativo como O, N ó F. Esta interacción se representa de la forma siguiente:

A—H•••B A—H•••A

A y B representan O, ó F; A—H es una molécula o parte de una molécula y B es parte de otra. La línea de puntos representa el enlace de hidrógeno.

La energía media de un enlace de hidrógeno es bastante grande para ser una interacción dipolo-dipolo (mayor de 40 KJ/mol). Esto hace que el enlace de hidrógeno sea una de gran importancia a la hora de la adopción de determinadas estructuras y en las propiedades de muchos compuestos.

Las primeras evidencias de la existencia de este tipo de interacción vinieron del estudio de los puntos de ebullición. Normalmente, los puntos de ebullición de compuestos que contienen a elementos del mismo grupo aumentan con el peso molecular. Pero, como se puede observar en la figura, los compuestos de los elementos de los Grupos 15, 16 y 17 no siguen esta norma. Para cada uno de los grupos, los compuestos de menos peso molecular (NH3, H2O, HF) tienen el punto de ebullición más alto, en contra de lo que se podría esperar en principio. Ello es debido a que existe algún tipo de interacción entre las moléculas en estado líquido que se opone al paso al estado de vapor. Esa interacción es el enlace de hidrógeno, y afecta a los primeros miembros de la serie pues son los más electronegativos, y por ello el enlace X-H es el más polarizado, lo que induce la mayor interacción por puente de hidrógeno. Los puentes de hidrógeno son especialmente fuertes entre las moléculas de agua y son la causa de muchas de las singulares propiedades de esta sustancia. Los compuestos de hidrógeno de elementos vecino al oxígeno y de los miembros de su familia en la tabla periódica, son gases a la temperatura ambiente: CH4, NH3, H2S, H2Te, PH3, HCl. En cambio, el H2O es líquida a la temperatura ambiente, lo que indica un alto grado de atracción intermolecular. En la figura se puede ver que el punto de ebullición del agua es 100 °C más alto de lo que cabría predecir si no hubiera puentes de hidrógeno. Los puentes de hidrógeno juegan también un papel crucial en la estructura del ADN, la molécula que almacena la herencia genética de todos los seres vivos.[cita requerida]

Fuerza de Van der Waals

Artículo principal: Fuerzas de Van der Waals

También conocidas como fuerzas de dispersión, de London o fuerzas dipolo-transitivas, corresponden a las interacciones entre moléculas con enlaces covalentes apolares debido a fenómenos de polarización temporal. Estas fuerzas se explican de la siguiente forma: como las moléculas no tiene carga eléctrica neta en ciertos momentos se puede producir una distribución en la que hay mayor densidad de electrones en una región que en otra, por lo que aparece un dipolo momentáneo.

Cuando dos de estas moléculas polarizadas y orientadas convenientemente se acercan lo suficiente entre ambas, pude ocurrir que las fuerzas eléctricas atractivas sean lo bastante intensas como para crear uniones intermoleculares. Estas fuerzas son muy débiles y se incrementan con el tamaño de las moléculas.


[dipolo permanente] H-O-H----Cl-Cl [dipolo transitivo]

Un ejemplo del segundo caso se encuentra en la molécula de cloro:

                   (+) (-)  (+) (-)

[dipolo transitivo] Cl-Cl----Cl-Cl [dipolo transitivo]

Atracciones dipolo-dipolo

Artículo principal: Interacción dipolo-dipolo

Una atracción dipolo-dipolo es una interacción covalente entre dos moléculas polares o dos grupos polares de la misma molécula si ésta es grande. En la sección anterior explicamos cómo se forman moléculas que contienen dipolos permanentes cuando se enlazan simétricamente con átomos con electronegatividad diferente. Las moléculas que son dipolos se atraen entre sí cuando la región positiva de una está cerca de la región negativa de la otra.

En un líquido las moléculas están muy cercanas entre sí y se atraen por sus fuerzas intermoleculares. Las moléculas deben tener suficiente energía para vencer esas fuerzas de atracción, y hacer que el líquido pueda entrar en ebullición. Si se requiere más energía para vencer las atracciones de las moléculas del líquido A que aquéllas entre las moléculas del líquido B, el punto de ebullición de A es más alto que el de B. Recíprocamente, menores atracciones intermoleculares dan pie a puntos de ebullición más bajos.

Las atracciones dipolo-dipolo, también conocidas como Keeson, por Willem Hendrik Keesom, quien produjo su primera descripción matemática en 1921, son las fuerzas que ocurren entre dos moléculas con dipolos permanentes. Estas funcionan de forma similar a las interacciones iónicas, pero son más débiles debido a que poseen solamente cargas parciales. Un ejemplo de esto puede ser visto en el ácido clorhídrico:

Dipole-dipole-interaction-in-HCl-2D.png tambien se pueden dar entre una molecula con dipolo negativo y positivo al mismo tiempo, más un átomo normal sin carga.

Interacciones iónicas

Son interacciones que ocurren a nivel de catión-anión, entre distintas moléculas cargadas, y que por lo mismo tenderán a formar una unión electrostática entre los extremos de cargas opuestas debido a la atracción entre ellas.

Un ejemplo claro de esto es lo que ocurre entre los extremos Carboxilo ( − COO ) y Amino  (-NH_3^+) de un aminoácido, péptido, polipéptido o proteína con otro.

Fuerzas de London o de dispersión

Las fuerzas de London se presentan en todas las sustancias moleculares. Son el resultado de la atracción entre los extremos positivo y negativo de dipolos inducidos en moléculas adyacentes.

Incluso los átomos de los gases nobles, las moléculas de gases diatómicos como el oxígeno, el nitrógeno y el cloro (que deben ser no polares) y las moléculas de hidrocarburos no polares como el CH4, C2H6 tienen tales dipolos instantáneos.

La intensidad de las fuerzas de London depende de la facilidad con que se polarizan los electrones de una molécula, y eso depende del número de electrones en la molécula y de la fuerza con que los sujeta la atracción nuclear. En general, cuantos más electrones haya en una molécula más fácilmente podrá polarizarse. Así, las moléculas más grandes con muchos electrones son relativamente polarizables. En contraste, las moléculas más pequeñas son menos polarizables porque tienen menos electrones. Las fuerzas de London varían entre aproximadamente 0.05 y 40 kJ/mol.

Cuando examinamos los puntos de ebullición de varios grupos de moléculas no polares pronto se hace evidente el efecto del número de electrones (Tabla 2). Este efecto también se correlaciona con la masa molar: cuanto más pesado es un átomo o molécula más electrones tiene: Resulta interesante que la forma molecular también puede desempeñar un papel en la formación de las fuerzas de London.

Dos de los isómeros del pentano –el pentano de cadena lineal y el 2,2-dimetilpropano (ambos con la fórmula molecular C5H12)- difieren en su punto de ebullición en 27 °C. La forma lineal de la molécula de n-pentano, por su linealidad, permite un contacto estrecho con las moléculas adyacentes, mientras que la molécula de 2,2-dimetilpropano, más esférica no permite ese contacto.

Tabla 2. Efecto del número de electrones sobre el punto de ebullición de sustancias no polares

Gases nobles Halógenos Hidrocarburos NºElec P.A P.E.°C NºElec P.M P.E.°C NºElec P.M P.E.°C He 2 4 -269 F2 18 38 -188 CH4 10 16 -161 Ne 10 20 -246 Cl2 34 71 -34 C2H6 18 30 -88 Ar 18 40 -186 Br2 70 160 59 C3H8 26 44 -42 Kr 36 84 -152 I2 106 254 184 C4H10 34 58 0

Fuerzas ion-dipolo

Artículo principal: Interacción ion-dipolo

Estas son interacciones que ocurren entre especies con carga. Las cargas similares se repelen, mientras que las opuestas se atraen.

Es la fuerza que existe entre un ion y una molécula polar neutra que posee un momento dipolar permanente. Las moléculas polares son dipolos (tienen un extremo positivo y un extremo negativo. Los iones positivos son atraídos al extremo negativo de un dipolo, en tanto que los iones negativos son atraídos al extremo positivo), estas tienen enlaces entre sí.

La magnitud de la energía de la interacción depende de la carga sobre el ion (Q), el momento dipolar del dipolo (µ), y de la distancia del centro del ion al punto medio del dipolo (d).

Las fuerzas ion-dipolo son importantes en las soluciones de las sustancias iónicas en líquidos.

Véase también

  • Otra fuerzas de atracción:
    • fuerza de adhesión: son las fuerzas que se establecen entre moléculas de cuerpos diferentes.
    • fuerza de atracción: es la fuerza que hace que las moléculas se unan.
    • fuerzas de cohesión: son las fuerzas que se establecen entre molécula de cuerpos iguales.
    • tensión superficial: es la fuerza que se establece en superficies líquidas que permiten la flotabilidad a algunos cuerpos.
    • fuerza de repulsión: son las fuerzas que hacen que las moléculas se repelen,es decir,se alejan.
  • Enlace por puente de hidrógeno
  • Enlace covalente
  • Enlace químico
  • Ley del Octeto

Referencias


Wikimedia foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Mira otros diccionarios:

  • Fuerza intermolecular — Las fuerzas intermoleculares son fuerzas electromagnéticas las cuales actúan entre moléculas o entre regiones ampliamente distantes de una macromolécula. En orden decreciente de fuerza, las fuerzas intermoleculares son: ● Intereacciones iónicas ● …   Enciclopedia Universal

  • Fuerzas de Van der Waals — En fisicoquímica, las fuerzas de Van der Waals (o interacciones de Van der Waals), denominada así en honor al científico neerlandés Johannes Diderik van der Waals, es la fuerza atractiva o repulsiva entre moléculas (o entre partes de una misma… …   Wikipedia Español

  • Fuerzas de van der Waals — Saltar a navegación, búsqueda En química física, la fuerza de van der Waals (o interacción de van der Waals), denominada así en honor al científico holandés Johannes Diderik van der Waals, es la fuerza atractiva o repulsiva entre moléculas (o… …   Wikipedia Español

  • Enlace químico — Un enlace químico es el proceso físico responsable de las interacciones atractivas entre átomos y moléculas, y que confiere estabilidad a los compuestos químicos diatómicos y poliatómicos. La explicación de tales fuerzas atractivas es un área… …   Wikipedia Español

  • Capilaridad — La capilaridad es una propiedad de los líquidos que depende de su tensión superficial la cual, a su vez, depende de la cohesión o fuerza intermolecular del líquido y que le confiere la capacidad de subir o bajar por un tubo capilar. Cuando un… …   Wikipedia Español

  • Interacción catión-pi — Saltar a navegación, búsqueda Interacción catión π entre el benceno y un catión sodio. La interacción catión π es una interacción molecular no covalente entre la cara de un sistema pi rico en electrones (vg. benceno, etileno) con un …   Wikipedia Español

  • Interacción catión-π — entre el benceno y un catión sodio. La interacción catión π es una interacción molecular no covalente entre la cara de un sistema pi rico en electrones (vg. benceno, etileno) con un catión adyacente (vg. Li+, Na+). Esta interacción inusual es un… …   Wikipedia Español

  • Cohesión del terreno — La cohesión del terreno es la cualidad por la cual las partículas del terreno se mantienen unidas en virtud de fuerzas internas, que dependen, entre otras cosas del número de puntos de contacto que cada partícula tiene con sus vecinas. En… …   Wikipedia Español

  • Energía de enlace — Saltar a navegación, búsqueda La energía de enlace es la energía total promedio que se desprendería por la formación de un mol de enlaces químicos, a partir de sus fragmentos constituyentes (todos en estado gaseoso). Alternativamente, podría… …   Wikipedia Español

  • Interacción dipolo-dipolo — Interacción entre los dipolos eléctricos de las moléculas de cloruro de hidrógeno. La interacción dipolo dipolo consiste en la atracción electrostática entre el extremo positivo de una molécula polar y el negativo de otra. El enlace de hidrógeno… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”