Constante elástica

Constante elástica

Una constante elástica es cada uno de los parámetros físicamente medibles que caracterizan el comportamiento elástico de un sólido deformable elástico. A veces se usa el término constante elástica también para referirse a los coeficientes de rigidez de una barra o placa elástica.

Un sólido elástico lineal e isótropo queda caracterizado sólo mediante dos constantes elásticas. Aunque existen varias posibles elecciones de este par de constantes elásticas, las más frecuentes en ingeniería estructural son el módulo de Young y el coeficiente de Poisson (otras constantes son el módulo de rigidez, el módulo de compresibilidad, y los coeficientes de Lamé).

Contenido

Materiales elásticos isótropos

En los materiales elásticos homogéneos e isótropos son los que presentan el mismo comportamiento mecánico para cualquier dirección de estiramiento alrededor de un punto. Así por ejemplo dado un ortoedro de un material homogéneo e isótropo, el módulo de Young y el coeficiente de Poisson son los mismos, con independencia de sobre qué par de caras opuestas se ejerza un estiramiento.

Debido a esa propiedad puede probarse que el comportamiento de un material elástico homogéneo isótropo queda caracterizado por sólo dos constantes elásticas. En diversos campos son comunes las siguientes elecciones de las constantes:

  • En ingeniería estructural. La elección más frecuente es el módulo elástico longitudinal y el coeficiente de Poisson (E, ν) [a veces también se usa la elección equivalente (E, G), ver más adelante].
  • En termodinámica de sólidos deformables resulta muy útil escoger el par (K, G) formado por el módulo de compresibilidad (isotérmica) K y el módulo elástico transversal G.
  • Coeficientes de Lamé (λ, μ)que también aparecen en el desarrollo de Taylor de la energía libre de Helmholtz.

Así tenemos un total de seis constantes elásticas comúnmente usadas: E, ν, K, G, λ y μ. Dos cualesquiera de ellas caracterizan completamente el comportamiento elástico, es decir, dado cualquier parámetro elástico de un material puede expresarse como función de dos cualesquiera de los parámetros anteriores. Obviamente, todos estos pares de constantes elásticos están relacionados, como se resume en la siguiente tabla:

Relaciones entre constantes elásticas (material isótropo lineal)
E \,: módulo de Young
\nu \,: coeficiente de Poisson
K\,: módulo de compresibilidad
G \,: módulo de rigidez
\lambda \,: 1er coeficiente de Lamé
\mu \,: 2º coeficiente de Lamé
(E, \nu) \, ---  K=\frac{E}{3(1-2\nu)}
G=\frac{E}{2(1+\nu)}
 \lambda=\frac{\nu E}{(1+\nu)(1-2\nu)}
\mu=\frac{E}{2(1+\nu)}
(K, G) \,  E=\frac{9KG}{3K+G}
 \nu=\frac{3K-2G}{2(3K+G)}
---  \lambda=K-\frac{2G}{3}
 \mu=G \,
(\lambda, \mu) \, E=\frac{\mu(3\lambda+2\mu)}{\lambda+\mu}
\nu=\frac{\lambda}{2(\lambda+\mu)}
K=\lambda+\frac{2\mu}{3}
G=\mu \,
---

Expresadas en términos del módulo de Young y el coeficiente de Poisson las ecuaciones constitutivas son:


\begin{pmatrix}
 \varepsilon_{xx}\\
  \varepsilon_{yy}\\  
  \varepsilon_{zz}\\
  \varepsilon_{xy}\\
  \varepsilon_{xz}\\  
  \varepsilon_{yz}
\end{pmatrix}
 =
\begin{pmatrix}
  \frac{1}{E} & -\frac{\nu}{E} & -\frac{\nu}{E} & & & \\
  -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu}{E} & & & \\  
  -\frac{\nu}{E} & -\frac{\nu}{E} & \frac{1}{E} \\
  & & & \frac{2(1+\nu)}{E} & 0 & 0 \\
  & & & 0 & \frac{2(1+\nu)}{E} & 0 \\
  & & & 0 & 0 & \frac{2(1+\nu)}{E} \\
\end{pmatrix}
\begin{pmatrix}
  \sigma_{xx}\\
  \sigma_{yy}\\  
  \sigma_{zz}\\
  \sigma_{xy}\\
  \sigma_{xz}\\  
  \sigma_{yz}
\end{pmatrix}


Las relaciones inversas vienen dadas por:


\begin{pmatrix}
  \sigma_{xx}\\
  \sigma_{yy}\\  
  \sigma_{zz}\\
  \sigma_{xy}\\
  \sigma_{xz}\\  
  \sigma_{yz}
\end{pmatrix}
 =
\frac{E}{1+\nu}
\begin{pmatrix}
  1+\alpha & \alpha & \alpha & & & \\
  \alpha & 1+\alpha & \alpha & & & \\
  \alpha & \alpha & 1+\alpha & & & \\
  & & & \frac{1}{2} & 0 & 0 \\
  & & & 0 & \frac{1}{2} & 0 \\
  & & & 0 & 0 & \frac{1}{2} \\
\end{pmatrix}
\begin{pmatrix}
  \varepsilon_{xx}\\
  \varepsilon_{yy}\\  
  \varepsilon_{zz}\\
  \varepsilon_{xy}\\
  \varepsilon_{xz}\\  
  \varepsilon_{yz}
\end{pmatrix}

Donde  \alpha:=\frac{\nu}{1-2\nu}

Materiales elásticos ortótropos

Algunos materiales elásticos son anisótropos, lo cual significa que su comportamiento elástico, en concreto la relación entre tensiones aplicadas y deformaciones unitarias es diferente para diferentes direcciones.

Una forma común de anisotropía es la que presentan los materiales elásticos ortotrópicos en los que el comportamiento elástico queda caracterizado por una serie de constantes elásticas asociadas a tres direcciones mutuamente perpendiculares. El ejemplo más conocido de material ortotrópico es la madera que presenta diferente módulo de elasticidad longitudinal (módulo de Young) a lo largo de la fibra, tangencialmente a los anillos de crecimiento y perpendicularmente a los anillos de crecimiento.

El comportamiento elástico de un material ortotrópico queda caracterizado por nueve constantes independientes: 3 módulos de elasticidad longitudinal (Ex, Ey, Ez), 3 módulos de rigidez (Gxy, Gyz, Gzx) y 3 coeficientes de Poisson (νxy, νyz, νzx). De hecho para un material ortotrópico la relación entre las componentes del tensor tensión y las componentes del tensor deformación viene dada por:


\begin{pmatrix}
  \varepsilon_{xx}\\
  \varepsilon_{yy}\\  
  \varepsilon_{zz}\\
  \varepsilon_{xy}\\
  \varepsilon_{xz}\\  
  \varepsilon_{yz}
\end{pmatrix}
 =
\begin{pmatrix}
  \frac{1}{E_x} & -\frac{\nu_{yx}}{E_y} & -\frac{\nu_{zx}}{E_z} & & & \\
  -\frac{\nu_{xy}}{E_x} & \frac{1}{E_y} & -\frac{\nu_{zy}}{E_z} & & & \\  
  -\frac{\nu_{xz}}{E_x} & -\frac{\nu_{yz}}{E_y} & \frac{1}{E_z} \\
  & & & \frac{1}{2G_{xy}} & 0 & 0 \\
  & & & 0 & \frac{1}{2G_{xz}} & 0 \\
  & & & 0 & 0 & \frac{1}{2G_{yz}} \\
\end{pmatrix}
\begin{pmatrix}
  \sigma_{xx}\\
  \sigma_{yy}\\  
  \sigma_{zz}\\
  \sigma_{xy}\\
  \sigma_{xz}\\  
  \sigma_{yz}
\end{pmatrix}


Donde: \frac{\nu_{yx}}{E_y} = \frac{\nu_{xy}}{E_x} \qquad
\frac{\nu_{zx}}{E_z} = \frac{\nu_{xz}}{E_x} \qquad
\frac{\nu_{yz}}{E_y} = \frac{\nu_{zy}}{E_z} \qquad (*)

Como puede verse las componentes que gobiernan el alargamiento y las que gobiernan la distorsión están desacopladas, lo cual significa que en general es posible producir alargamientos en torno a un punto sin provocar distorsiones y viceversa. Las ecuaciones inversas que dan las deformaciones en función de las tensiones toman una forma algo más complicada:


\begin{pmatrix}
  \sigma_{xx}\\
  \sigma_{yy}\\  
  \sigma_{zz}\\
  \sigma_{xy}\\
  \sigma_{xz}\\  
  \sigma_{yz}
\end{pmatrix}
 =
\begin{pmatrix}
  \frac{1-\nu_{yz}\nu_{yz}}{E_y E_z \Delta} & \frac{\nu_{yx}+\nu_{yz}\nu_{zx}}{E_y E_z \Delta} & \frac{\nu_{zx}+\nu_{zy}\nu_{yx}}{E_y E_z \Delta} & & & \\
  \frac{\nu_{xy}+\nu_{xz}\nu_{zy}}{E_x E_z \Delta} & \frac{1-\nu_{zx}\nu_{xz}}{E_x E_z \Delta} & \frac{\nu_{zy}+\nu_{zx}\nu_{xy}}{E_x E_z \Delta} & & & \\  
  \frac{\nu_{xz}+\nu_{xy}\nu_{yz}}{E_x E_y \Delta} & \frac{\nu_{yz}+\nu_{yx}\nu_{xz}}{E_x E_y \Delta} & \frac{1-\nu_{xy}\nu_{yx}}{E_x E_y \Delta} \\
  & & & 2G_{xy} & 0 & 0 \\
  & & & 0 & 2G_{xz} & 0 \\
  & & & 0 & 0 & 2G_{yz} \\
\end{pmatrix}
\begin{pmatrix}
  \varepsilon_{xx}\\
  \varepsilon_{yy}\\  
  \varepsilon_{zz}\\
  \varepsilon_{xy}\\
  \varepsilon_{xz}\\  
  \varepsilon_{yz}
\end{pmatrix}

Donde:
\Delta := \frac{1-\nu_{xy}\nu_{yx}-\nu_{xz}\nu_{zx}-\nu_{yz}\nu_{zy}-2\nu_{xy}\nu_{yz}\nu_{zx}}{E_x E_y E_z}

De hecho la matriz anterior, que representa al tensor de rigidez, es simétrica ya que de las relaciones (*) se la simetría de la anterior matriz puesto que:


\frac{\nu_{yx}+\nu_{yz}\nu_{zx}}{E_y E_z \Delta} = \frac{\nu_{xy}+\nu_{xz}\nu_{zy}}{E_x E_z \Delta} \qquad
\frac{\nu_{zx}+\nu_{zy}\nu_{yx}}{E_y E_z \Delta} = \frac{\nu_{xz}+\nu_{xy}\nu_{yz}}{E_x E_y \Delta} \qquad
\frac{\nu_{zy}+\nu_{zx}\nu_{xy}}{E_x E_z \Delta} = \frac{\nu_{yz}+\nu_{yx}\nu_{xz}}{E_x E_y \Delta}

Materiales transversalmente isótropos

Un caso particular de material ortotrópico es el de los materiales transversalmente isótropos en los que existe una dirección preferente o longitudinal y todas las secciones perpendiculares a la misma son mecánicamente equivalentes. Así, en cualquier sección transversal a la dirección diferente habrá isotropía y el número de constantes elásticas independientes necesarias para caracterizar dicho material será 5 y no 9, como en el caso de un material ortotrópico general. Las cinco constantes independientes serán de hecho: 2 módulos de elasticidad longitudinal (EL, Et), 1 módulo de rigidez (Gt) y 2 coeficientes de Poisson (νL, νLt). Estas constantes se relacionan con las demás constantes generales de un material ortotrópico mediante estas relaciones:

\begin{cases} E_y = E_L & E_x = E_z = E_t \\
G_{xz} = \cfrac{E_t}{2(1+\nu_t)} & G_{zy} = G_{xy} = G_t \\
\nu_{xz} = \nu_{zx}= \nu_t & \nu_{xy} = \nu_{zy} = \nu_{tL} \end{cases}

Tensor de constantes elásticas

Para cuerpos elásticos lineales anisótropicos más generales, las relaciones entre tensión y deformaciones pueden seguir expresándose mediante un tensor de constantes elásticas o tensor de rigidez dado por:

 \sigma_{ij} = \sum_{k,l} C_{ijkl} \, \varepsilon_{kl}

En tres dimensiones puesto que cada uno de los índices i, j, k y l puede tener 3 valores diferentes (x, y o z), existen 34 componentes del tensor Cijkl, sin embargo, de la simetría de las componentes de tensión y deformación deben cumplirse las siguientes relaciones entre componentes:

 C_{ijkl} = C_{jikl} \, (debido a la simetría del tensor tensión).
 C_{ijkl} = C_{ijlk} \, (debido a la simetría del tensor deformación)
 C_{ijkl} = C_{klij} \, (debido a que la energía elástica viene dada por una forma cuadrática).


Así de las 3x3 = 9 componentes de los tensores tensión y deformación sólo existen (3²+3)/2 = 6 valores diferentes; a partir de esto, se sigue que el tensor de constantes elásticas sólo puede tener (6²+6)/2 = 21 componentes diferentes como máximo. Estas 21 componentes pueden escribirse en forma matricial del siguiente modo:


\begin{pmatrix}
  \sigma_{xx}\\
  \sigma_{yy}\\  
  \sigma_{zz}\\
  \sigma_{xy}\\
  \sigma_{xz}\\  
  \sigma_{yz}
\end{pmatrix}
 =
\begin{pmatrix}
  C_{xxxx} & C_{xxyy} & C_{xxzz} & C_{xxxy} & C_{xxxz} & C_{xxyz}\\
  C_{yyxx} & C_{yyyy} & C_{yyzz} & C_{yyxy} & C_{yyxz} & C_{yyyz}\\
  C_{zzxx} & C_{zzyy} & C_{zzzz} & C_{zzxy} & C_{zzxz} & C_{zzyz}\\
  C_{xyxx} & C_{xyyy} & C_{xyzz} & C_{xyxy} & C_{xyxz} & C_{xyyz}\\
  C_{xzxx} & C_{xzyy} & C_{xzzz} & C_{xzxy} & C_{xzxz} & C_{xzyz}\\
  C_{yzxx} & C_{yzyy} & C_{yzzz} & C_{yzxy} & C_{yzxz} & C_{yzyz}
\end{pmatrix}
\begin{pmatrix}
  \varepsilon_{xx}\\
  \varepsilon_{yy}\\  
  \varepsilon_{zz}\\
  \varepsilon_{xy}\\
  \varepsilon_{xz}\\  
  \varepsilon_{yz}
\end{pmatrix}

Componentes tensoriales del tensor isótropo

Las relaciones anteriores se han escrito siempre en forma de matriz, pero para los diferentes tipos de sólidos es posible escribir también las componentes tensoriales explícitas. Para un sólido isótropo el tensor de constantes elásticas en coordenadas cartesianas viene dado por:

C_{ijkl} = \lambda \delta_{ij}\delta_{kl} + \mu (\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk})\,

En un sistema de coordenadas curvilíneas (esféricas, cilíndricas, etc.) más general el tensor anterior es simplmente:

C_{ijkl} = \lambda g_{ij}g_{kl} + \mu (g_{ik}g_{jl}+ g_{il}g_{jk})\,

Donde g_{ij}\, es el tensor métrico asociado a las coordenadas curvilíneas correspondientes.

Bibliografía

Véase también

  • Anexo:Constantes elásticas de diferentes materiales

Wikimedia foundation. 2010.

Игры ⚽ Нужен реферат?

Mira otros diccionarios:

  • Constante — El término constante puede referirse a: En matemática Constante matemática, un valor fijo. En física Constante física, un valor para el cálculo de operaciones físicas. Constante elástica, cada uno de los parámetros físicamente medibles que… …   Wikipedia Español

  • Membrana elástica — Una membrana elástica es un elemento estructural de pequeño espesor y escasa rigidez flexional que sólo puede resistir tensiones de tracción. Contenido 1 Descripción geométrica 2 Ecuaciones de equilibrio 3 Membrana de Prandtl …   Wikipedia Español

  • Ley de elasticidad de Hooke — En física, la ley de elasticidad de Hooke o ley de Hooke, originalmente formulada para casos del estiramiento longitudinal, establece que el alargamiento unitario que experimenta un material elástico es directamente proporcional a la fuerza… …   Wikipedia Español

  • Energía de deformación — Saltar a navegación, búsqueda La energía de deformación es el aumento de energía interna acumulado en el interior de un sólido deformable como resultado del trabajo realizado por las fuerzas que provocan la deformación. Contenido 1 Energía de… …   Wikipedia Español

  • Oscilador armónico — Se dice que un sistema cualquiera, mecánico, eléctrico, neumático, etc. es un oscilador armónico si cuando se deja en libertad, fuera de su posición de equilibrio, vuelve hacia ella describiendo oscilaciones sinusoidales, o sinusoidales… …   Wikipedia Español

  • Módulo de Young — Diagrama tensión deformación. El módulo de Young viene representado por la tangente a la curva en cada punto. Para materiales como el acero resulta aproximadamente constante dentro del límite elástico. El módulo de Young o módulo elástico… …   Wikipedia Español

  • Resorte — Para otros usos de este término, véase Resorte (desambiguación). Muelles de tracción. Se conoce como resorte o muelle a un operador elástico capaz de almacenar energía y desprenderse de ella sin sufrir deformación permanente cuando cesan las… …   Wikipedia Español

  • Elasticidad (mecánica de sólidos) — Una varilla elástica vibrando, es un ejemplo de sistema donde la energía potencial elástica se transforma en energía cinética y viceversa. En física e ingeniería, el término elasticidad designa la propiedad mecánica de ciertos materiales de… …   Wikipedia Español

  • Módulo de cizalladura — El módulo de cizalladura, también llamado módulo de elasticidad transversal, es una constante elástica que caracteriza el cambio de forma que experimenta un material elástico (lineal e isótropo) cuando se aplican esfuerzos cortantes. Este módulo… …   Wikipedia Español

  • Rigidez — Saltar a navegación, búsqueda En ingeniería, la rigidez es la capacidad de un objeto sólido o elemento estructural para soportar esfuerzos sin adquirir grandes deformaciones o desplazamientos. Los coeficientes de rigidez son magnitudes físicas… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”