Acoplamiento de marea

Acoplamiento de marea
Dos cuerpos orbitando alrededor de uno central (rojo). El más cercano está acoplado, mientras que el más lejano no. Pulsar para ver animación.

El acoplamiento de marea es la causa de que la cara de un objeto astronómico esté fijada apuntando a otro, tal como la cara visible de la Luna está siempre apuntando a la Tierra. Un objeto acoplado de esta forma toma para la rotación sobre su eje el mismo tiempo que para efectuar la traslación alrededor del compañero. Esta rotación síncrona hace que un hemisferio apunte de forma continua hacia el objeto compañero. Normalmente, solo el satélite se acopla alrededor de un planeta de mayor tamaño, pero si la diferencia de masa entre los dos cuerpos y su distancia es pequeña, puede que ambos objetos se acoplen de mareas uno con el otro, como es el caso de Plutón y Caronte.

Contenido

La Luna

Tanto la rotación de la Luna como su periodo orbital duran algo menos de 4 semanas, por lo que no importa cuándo se observa la Luna y vemos siempre la misma cara de la Luna. La parte de la Luna que no podemos ver desde la Tierra (cara oculta) no fue observada hasta 1959 por la sonda soviética Luna 3.

A pesar de que los periodos orbitales y rotacionales de la Luna coinciden, podemos observar hasta un 59% de la superficie total de la Luna debido al fenómeno de las libraciones y el paralelaje. Las libraciones se originan por las variaciones de velocidad de la Luna debido a la excentricidad de la órbita: esto nos permite ver hasta 6° más a lo largo de su perímetro. El paralelaje es un efecto geométrico: en la superficie de la Tierra podemos estar algo distanciados de la línea que va del centro de la Tierra al de la Luna, y por ello podemos observar un poco (alrededor de 1°) alrededor del lado de la Luna cuando está en nuestro horizonte local.

Mecanismo

El cambio en el ritmo de rotación necesario para acoplar por mareas un cuerpo B a un cuerpo A más grande se origina por el momento aplicado por la gravedad de A en las mareas que ha inducido en B.

Bultos de mareas: la gravedad de A produce una fuerza de marea sobre B que distorsiona ligeramente la forma que B tendría por si solo en equilibrio gravitatorio, por lo que se alarga a lo largo del eje orientado hacia A, y a su vez, se comprime ligeramente en las dos direcciones perpendiculares. Estas distorsiones son conocidas como los bultos de mareas. En los objetos astronómicos grandes, con forma casi esférica por su propia gravitación, la distorsión de marea produce un esferoide prolate o elipsoide. Los objetos más pequeños también experimentan esta distorsión, pero esta distorsión es menos regular. Cuando B no está aún acoplado por mareas, los bultos viajan sobre su superficie, con uno de los dos bultos salientes viajando próximo al punto donde el objeto A aparece en el cenit.

Arrastre del bulto: El material de B ejerce resistencia a las modificaciones periódicas de su superficie por las fuerzas de marea. Se necesita algún tiempo para que la forma de B alcance la forma de equilibrio gravitacional, pero al rotar el objeto B, el bulto que se forma ya ha sido alejado del eje A-B. Visto desde un punto fijo en el espacio, los puntos de mayor extensión del bulto se desplazan desde el eje orientado hacia A. Si el periodo de rotación de B es más corto que su periodo de traslación, los bultos se van por delante del eje orientado hacia A en la dirección de rotación, mientras que si el periodo orbital de B es más corto, los bultos quedan por detrás.

Momento resultante: Como los bultos están desplazados ahora del eje A-B, la fuerza gravitacional de A tira de la masa en el bulto en B ejerciendo un momento en B. El momento en el bulto orientado hacia A actúa en el sentido de que el periodo de rotación de B se equipare al periodo orbital, mientras que el bulto "trasero" en el sentido opuesto a A actúa en el sentido contrario. Sin embargo, el bulto que está en el lado mirando directamente a A está más próximo a A que el situado en el lado opuesto, por una distancia aproximadamente del diámetro de B, por lo que experimenta una fuerza y momento gravitacional algo mayor. El resultado neto del momento sobre ambos bultos es que este actúa siempre en el sentido de sincronizar la rotación de B con el periodo orbital, llevando inevitablemente al acoplamiento de mareas.

Cambios orbitales: El momento angular del sistema A-B se conserva en este proceso, por lo que cuando la velocidad de rotación de B se va reduciendo y va perdiendo su momento angular rotacional, su momento angular orbital va aumentando en la misma medida (hay también unos pequeños efectos en la rotación de A). Esto causa que la órbita de B se aleje de A en tándem con la reducción rotacional. Para el otro caso en que B comienza rotando muy despacio respecto a la traslación, el acoplamiento de mareas acelera la rotación, y baja la órbita.

Acoplamiento del cuerpo mayor: El efecto del acoplamiento de mareas también lo siente el cuerpo mayor A, pero a un ritmo inferior puesto que el efecto gravitacional de B es más débil debido a su menor tamaño. Por ejemplo, la rotación de la Tierra se va reduciendo lentamente por efecto de la Luna, por una cantidad que se puede percibir en tiempos geológicos en algunos fósiles. Para objetos de tamaños similares, el efecto puede ser muy parecido para ambos, de tal forma que ambos cuerpos se quedan acoplados entre sí. El planeta enano Plutón y su satélite Caronte son buenos ejemplos de este caso; solo se puede ver Caronte desde un hemisferio de Plutón.

Resonancia rotación-órbita: Finalmente, en algunos casos donde la órbita es excéntrica y el efecto de mareas es relativamente débil, el cuerpo más pequeño puede terminar con una resonancia orbital, en vez de acoplado por mareas. Aquí, la proporción entre el periodo de rotación y el periodo orbital es una fracción bien definida diferente a 1:1. Un caso bien conocido es la rotación de Mercurio — su órbita está acoplada alrededor del Sol con una resonancia 3:2.

Configuración final

Hay una tendencia hacia que un satélite se oriente hacia la configuración de mínima energía, con el lado más pesado orientado hacia el planeta. Los cuerpos con formas irregulares orientarán su eje largo hacia el planeta.

La orientación de la Luna puede estar relacionada con este proceso. Los mares lunares se componen de basalto, el cual es más pesado que la corteza continental que los rodean, y se formaron en el lado de la luna en el cual la corteza es mucho más fina. El hemisferio orientado hacia la Tierra contiene todos los grandes mares. Sin embargo, la imagen simple de que la luna se estabilizó con el lado más pesado orientado hacia la Tierra es incorrecta, pues el acoplamiento de mareas ocurrió en una escala de tiempo muy corta de 1000 años o menos, mientras que los mares se formaron mucho más tarde.

Lista de cuerpos acoplados por la fuerza de marea conocidos

Sistema Solar

Acoplado al Sol

  • Mercurio (en una rotación/resonancia orbital 3:2)

Acoplado a la Tierra

Acoplados a Marte

Acoplados a Júpiter

  • Metis
  • Adrastea
  • Amaltea
  • Tebe
  • Ío
  • Europa
  • Ganímedes
  • Calisto

Acoplados a Saturno

  • Pan
  • Atlas
  • Prometeo
  • Pandora
  • Epimeteo
  • Jano
  • Mimas
  • Encélado
  • Telesto
  • Tetis
  • Calipso
  • Dione
  • Rea
  • Titán
  • Jápeto

Acoplados a Urano

  • Miranda
  • Ariel
  • Umbriel
  • Titania

Acoplados a Neptuno

  • Proteo
  • Tritón

Acoplado a Plutón

  • Caronte (Plutón a su vez está acoplado a Caronte)

Extrasolar

Referencias


Wikimedia foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Mira otros diccionarios:

  • Acoplamiento — Con el término Acoplamiento se denota al dispositivo o método que tiene por objetivo transferir energía. Los acoplamientos a veces permiten ser desactivados durante su funcionamiento de forma que se interrumpe la transferencia de energía. Puede… …   Wikipedia Español

  • Acoplamiento de momento angular — En mecánica cuántica, el procedimiento de construir estados propios del momento angular total (estados de un sistema con valores bien definidos del momento angular) a partir de los estados propios de los momentos angulares individuales se llama… …   Wikipedia Español

  • Habitabilidad planetaria — Comprender la habitabilidad planetaria es, en parte, extrapolar las condiciones terrestres, ya que la Tierra es el único planeta conocido q …   Wikipedia Español

  • Tierra — «Planeta Tierra» redirige aquí. Para la serie documental, véase Planeta Tierra (documental). Para otros usos de este término, véase Tierra (desambiguación). Tierra …   Wikipedia Español

  • Adrastea (satélite) — Adrastea Imagen de Adrastea tomada por la nave Galileo. Descubrimiento …   Wikipedia Español

  • Rotación síncrona — Saltar a navegación, búsqueda En astronomía, la rotación síncrona o sincrónica es un término utilizado para describir que el movimiento de un cuerpo que tarda el mismo tiempo en girar sobre si mismo que al completar una órbita alrededor del… …   Wikipedia Español

  • Augustus Edward Hough Love — Saltar a navegación, búsqueda Augustus Edward Hough Love (17 de abril de 1863 Weston super Mare – 5 de junio de 1940, Oxford), mejor conocido como A. E. H. Love, fue un matemático y geofísico del Reino Unido. Es famoso por su trabajo en la teoría …   Wikipedia Español

  • Cara oculta de la Luna — Fotografía de la cara oculta de la Luna …   Wikipedia Español

  • Relatividad general — Algunas partes de este artículo pueden resultar complicadas, en ese caso se recomienda Introducción a la relatividad general Representación artística de la explosión de la supernova SN 2006gy, situada a 238 millones de años luz. De ser válido el… …   Wikipedia Español

  • Energía mareomotriz — Antiguo molino de mareas en Isla Cristina (Huelva) …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”