Teorema de descomposición espectral

Teorema de descomposición espectral

En matemáticas, y más especialmente en álgebra lineal y análisis funcional, el teorema de descomposición espectral, o más brevemente teorema espectral, expresa las condiciones bajo las cuales un operador o una matriz pueden ser diagonalizados (es decir, representadas como una matriz diagonal en alguna base). Se identifica así, un tipo de operadores lineales que pueden representarse como una multiplicación de operadores.

Ejemplos de los operadores a los que se aplica este teorema son los operadores autoadjuntos, o más en general, los operadores normales en espacios de Hilbert.

El Teorema Espectral, proporciona además, una descomposición canónica (llamada descomposición espectral) del espacio vectorial sobre el cual actúa el operador.

Espacio de dimensión finita

Sea A:

Con el producto interno estándar, usando notación de Dirac, la simetría del operador implica:

 \langle A x \mid y \rangle =  \langle x \mid A y \rangle

para toda pareja de elementos  \left( x, y \right) \in V^2 . Recordemos que un vector propio de un operador A es un vector x distinto de cero tal que Ax = rx. El valor r es el valor propio del vector, y debe ser un escalar.

Teorema: Existe una base ortonormal de V que consiste en los vectores propios de A. Los valores propios correspondientes a cada vector son reales.

Demostración: Asumimos que el cuerpo de escalares para el operador A son los complejos. Vamos a demostrar que los valores propios son reales. Siendo λ uno de los los valores propios:

 \lambda \langle x \mid x \rangle= \langle A x \mid x \rangle = \langle  x \mid A x \rangle = \overline{\lambda} \langle  x \mid x \rangle

λ es igual a su conjugado y por tanto debe ser real. Probemos ahora la existencia de la base de vectores propios por inducción sobre de la dimensión de V. Para ello, es suficiente demostrar que A tiene al menos un vector propio e distinto de cero. Podemos considerar ahora el espacio K de vectores ortogonales a e. Este es un espacio de dimensión finita. Si llamamos w a los vectores de K, veamos cómo actúa el operador A sobre los w:

 \langle A w \mid e \rangle = \langle  w \mid A e \rangle = \lambda \langle  w \mid e \rangle = 0

A mapea los vectores w sobre K, es decir, al actuar A sobre un vector de K da otro vector de K. Lo que es más, A considerado un operador lineal en K, es también simétrico en K y con esto se completa la demostración.

Queda, sin embargo, por demostrar que A tenga al menos un vector propio. Teniendo en cuenta que, por el Teorema fundamental del álgebra los números complejos son un cuerpo algebraicamente cerrado, la función polinómica p(x) = det(A-xI) tiene por lo menos una raíz r. Esto implica que el operador A-rI no es una matriz invertible y por tanto, mapea un vector e distinto de cero a 0. Este vector e, es un vector propio de A. Esto finaliza la demostración.

El teorema espectral es también válido para operadores simétricos en espacios de dimensión finita con producto interior real.

La descomposición espectral de un operador A que tiene una base ortonormal de vectores propios, se obtiene agrupando todos los vectores que corresponden al mismo valor propio. Esto es

 V_\lambda = \{\,v \in V: A v = \lambda v\,\}.

Estos espacios están definidos invariablemente, no se requiere ninguna elección de valores propios concretos.

Como una consecuencia inmediata del teorema espectral para operadores simétricos obtenemos el teorema de descomposición: V es la suma directa ortogonal de los espacios Vλ

 P_\lambda P_\mu=0 \quad \mbox{if} \lambda \neq \mu

y si λ1,..., λm son los autovalores de A,

A =\lambda_1 P_{\lambda_1} +\cdots+\lambda_m P_{\lambda_m}.

Si A es un operador normal en un espacio de dimensión finita con producto interior, A también tiene una descomposición espectral y el teorema de descomposición se mantiene para A. Los autovalores serán números complejos en general. Estos resultados se convierten directamente en resultados sobre las matrices: Para una matriz normal A, existe una matriz unitaria U tal que

A=U \Sigma U^* \;

donde Σ es la matriz diagonal formada por los valores propios de A. Cualquier matriz que se pueda diagonalizar de esta forma debe ser normal.

Los vectores columna de U son los vectores propios de A y son ortogonales. Si A es una matriz real simétrica, se sigue por la versión real del teorema espectral para operadores simétricos que existe una matriz ortogonal tal que, UAU* es diagonal y todos los valores propios de A son reales.

Véase también


Wikimedia foundation. 2010.

Игры ⚽ Нужен реферат?

Mira otros diccionarios:

  • Espectro de un operador — Saltar a navegación, búsqueda El espectro de un operador es un conjunto de valores complejos que generaliza el concepto de valor propio (autovalor) a espacios vectoriales de dimensión infinita. El concepto es muy importante tanto en análisis… …   Wikipedia Español

  • Operador hermitiano — Saltar a navegación, búsqueda Un operador hermítico definido sobre un espacio de Hilbert es un operador lineal que, sobre un cierto dominio, coincide con su propio operador adjunto. Una propiedad importante de estos operadores es que sus… …   Wikipedia Español

  • Operador hermítico — Un operador hermítico (tambien llamado hermitiano) definido sobre un espacio de Hilbert es un operador lineal que, sobre un cierto dominio, coincide con su propio operador adjunto. Una propiedad importante de estos operadores es que sus… …   Wikipedia Español

  • Función de onda — para una partícula bidimensional encerrada en una caja. Las líneas de nivel sobre el plano inferior están relacionadas con la probabilidad de presencia. En mecánica cuántica, una función de onda es una forma de representar el estado físico d …   Wikipedia Español

  • Vector propio y valor propio — Fig. 1. En esta transformación de la Mona Lisa, la imagen se ha deformado de tal forma que su eje vertical no ha cambiado. (nota: se han recortado las esquinas en la imagen de la derecha) …   Wikipedia Español

  • Interpolación polinómica de Lagrange — En análisis numérico, el polinomio de Lagrange, llamado así en honor a Joseph Louis de Lagrange, es el polinomio que interpola un conjunto de puntos dado en la forma de Lagrange. Fue descubierto por Edward Waring en 1779 y redescubierto más tarde …   Wikipedia Español

  • Lógica cuántica — En física, la lógica cuántica es el conjunto de reglas algebraicas que rigen las operaciones para combinar y los predicados para relacionar proposiciones asociadas a acontecimientos físicos que se observan a escalas atómicas. Ejemplos de tales… …   Wikipedia Español

  • Transformada de Fourier — Para otros usos de este término, véase Transformación (desambiguación). En matemática, la transformada de Fourier es una aplicación que hace corresponder a una función f, con valores complejos y definida en la recta, con otra función g definida… …   Wikipedia Español

  • Inflación cósmica — La inflación cósmica es un conjunto de propuestas en el marco de la física teórica para explicar la expansión ultrarrápida del universo en los instantes iniciales y resolver el llamado problema del horizonte. Contenido 1 Introducción 2 Motivación …   Wikipedia Español

  • Matriz simétrica — Una matriz de elementos: es simétr …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”