Fertilizante

Fertilizante
Fertilizando con nitrógeno un campo de maíz, en Estados Unidos.

Fertilizante, tipo de sustancia o mezcla química, natural o sintética utilizada para enriquecer el suelo y favorecer el crecimiento vegetal. Las plantas no necesitan compuestos complejos, del tipo de las vitaminas o los aminoácidos, esenciales en la nutrición humana, pues sintetizan todos los que precisan. Sólo exigen una docena de elementos químicos, que deben presentarse en una forma que la planta pueda absorber. Dentro de esta limitación, el nitrógeno, por ejemplo, puede administrarse con igual eficacia en forma de urea, nitratos, compuestos de amonio o amoníaco puro.[1]

Contenido

Generalidades

Definimos fertilizante como “BUENOS”, es decir, abastecer y suministrar los elementos inorgánicos u orgánicas al suelo para que la planta los absorba. Se trata, por tanto, de un aporte artificial de nutrientes.

Un fertilizante químico es un producto que contiene, por los menos, un elemento químico que la planta necesita para su ciclo de vida. La característica más importante de cualquier fertilizante es que debe tener una solubilidad mínima en agua, para que, de este modo pueda disolverse en el agua de riego, ya que la mayoría de los nutrientes entran en forma pasiva en la planta, a través del flujo del agua.

Estos elementos químicos o nutrientes pueden clasificarse en: macroelementos y microelementos.

  • Los macroelementos son aquéllos que se expresan como:
% en la planta o g/100g

Los principales son: N – P – K – Ca – Mg - S.[2] [3]

  • Los microelementos se expresan como:
ppm (parte por millón) = mg/kg = mg /1000g

Los principales son: Fe – Zn – Cu – Mn – Mo- B – Cl.[4]

Producción de fertilizantes

En 1812 se fundó la fábrica de abonos y fertilizantes S.A. Mirat, en Salamanca, España.

Todos los proyectos de producción de fertilizantes requieren la fabricación de compuestos que proporcionan los nutrientes para las plantas: nitrógeno, fósforo y potasio, sea individualmente (fertilizantes "simples"), o en combinación (fertilizantes "mixtos").[5]

El amoníaco constituye la base para la producción de los fertilizantes nitrogenados, y la gran mayoría de las fábricas contienen instalaciones que lo proporcionan, sin considerar la naturaleza del producto final. Asimismo, muchas plantas también producen ácido nítrico en el sitio. Los fertilizantes nitrogenados más comunes son: amoníaco anhidro, urea (producida con amoníaco, nitrato de amonio (producido con amoníaco y ácido nítrico), sulfato de amonio (fabricado a base de amoníaco y ácido sulfúrico) y nitrato de calcio y amonio, o nitrato de amonio y caliza el resultado de agregar calizaCaMg(CO3)2 al nitrato de amonio.

Los fertilizantes de fosfato incluyen los siguientes: piedra de fosfato molida, escoria básica (un subproducto de la fabricación de hierro y acero), superfosfato (que se produce al tratar la piedra de fosfato molida con ácido sulfúrico), triple superfosfato (producido al tratar la piedra de fosfato con ácido fosfórico), y fosfato mono y diamónico. Las materias primas básicas son: piedra de fosfato, ácido sulfúrico (que se produce, usualmente, en el sitio con azufre elemental), y agua.

Todos los fertilizantes de potasio se fabrican con salmueras o depósitos subterráneos de potasa. Las formulaciones principales son cloruro de potasio, sulfato de potasio y nitrato de potasio.

Se pueden producir fertilizantes mixtos, mezclándolos en seco, granulando varios fertilizantes intermedios mezclados en solución, o tratando la piedra de fosfato con ácido nítrico (nitrofosfatos).

También es posible hacer fertilizante de forma natural.

Clases de abonos

Hay dos formas de hacer abonos químicos. La forma más fácil es a través de minas ( ejemplo, nitrato potásico, cloruro potásico). La otra forma es a través de procesos químicos en plantas químicas.

Hasta 1850 aproximadamente, el abono usado era abono orgánico, es decir, una mezcla de estiércol, guano compostaje con agua. Este fue el primer abono líquido empleado. Hasta mediados del siglo XX también se usaba pescado como fertilizante.

El primer abono químico “de verdad” fue el sulfato amónico (NH4)2SO4.

NH4OH + H2SO4 → (NH4)2SO4 + H2O

En este compuesto el SO2 proviene del azufre (S). Si quemamos azufre e introducimos el humo que sale en agua obtenemos H2SO4. El amonio (NH4) provenía de las minas de carbón. Estas minas se inundaron de agua para obtener amonio, es decir:

NH3(g) + H2O →NH4OH.

Más tarde comenzaron a aspirar el amoníaco gaseoso fuera de la mina y una vez fuera lo mezclaron con el agua.

Hace unos 200 años se encontraron minas de nitrato sódico (NaNO3) en Chile. De este modo, el nitrato sódico fue el segundo abono químico usado. En España, en 1880 una empresa comenzó a exportar nitrato sódico

El siguiente abono químico fue el fósforo, en forma de fosfatos, provenientes de las rocas fosfatadas. El P es un elemento muy reactivo que no existe en la naturaleza en su forma natural. En las minas suele estar unido al calcio, como fosfato cálcico Ca3(PO4)2. La mayoría del calcio procede de las rocas carbónicas, en forma de carbonato cálcico (CaCO3), mientras que en las minas de fósforo está en forma de fosfato cálcico. El fósforo unido al calcio y oxígeno es demasiado estable para ser asimilado por las plantas, por lo que permanece mucho P en el suelo que la planta no puede usar.

Por ello, si tomamos el fosfato cálcico con ácido sulfúrico obtenemos ácido fosfórico, que es la forma más asimilable por la planta.

Ca3(PO4)2 + H2SO4 → H3PO4 + CaSO4 (yeso)

Si bien, el ácido fosfórico obtenido es un derivado lo consideramos como H3PO4 :

Ca3(PO4)2 + H2SO4 → H2PO4- + CaSO4

Mientras el (NH4)2SO4 está en forma de cristales, el H3PO4 es líquido. Si bien, el P aparece en los abonos como Ca(H2PO4)2 por ser asimilable por las plantas. También se venden abonos fosfatados en forma de (NH4)2HPO4, conocido como DAP y en forma de (NH4)H2PO4, conocido como MAP. Tanto el DAP como el MAP son abonos granulados mezclados con tierra, lo que le da un aspecto granulado como “trigo”.

El potasio (K) apareció en Austria, en minas de cloruro potásico KCl hace unos 150 años.

El gran salto de los abonos químicos fue en los años 1920-1930, tras la 1ª Guerra Mundial. Durante la 1ª Guerra Mundial, en 1905, un científico alemán llamado Haber encontró la forma de fabricar amoníaco que se usa en la actualidad.

N2 + H2 → NH3 500kg de presión 800 °C

El ácido nítrico se obtiene quemando NH3, para pasarlo a NO2, que mezclamos con agua, según el proceso de Ostval:

NH3 → NO2 + H2O → HNO3

Podemos obtener el nitrato amónico a partir del ácido nítrico, usando el proceso Otsvald :

NH3 → NO2 + H2O → HNO3 + NH3 → (NH4)NO3

Otro abono es el nitrato cálcico Ca(NO3)2 , que apareció en 1920, de la forma:

CaO + HNO3 = Ca(NO3)2

El mayor productor de este abono es Noruega, a partir del NO2 procedente de los rayos:

NO2 + H2O = HNO3 + CaO = Ca(NO3)2

Otro es el nitrato sódico NaNO3, que no es un buen abono, pero que se sigue empleando por tradición:

En 1930 aparece la urea, que es actualmente el abono nitrogenado más producido en el Mundo:

NH3 + CO2 = (NH2)2CO

Vemos como el nitrógeno puede aparecer como nitrato, amoníaco y ureico. Debido a que durante la 1ª Guerra Mundial se crearon muchas fábricas de nitrato amónico para explosivos NH4(NO3), al terminar la guerra muchas de estas fábricas se emplearon para la fabricación de este nitrato como abono. Por ello, el primer abono líquido fue el “agua-amonia”, que se incorpora al suelo porque en la superficie se evapora:

NH3 + H2O = NH4OH

Otro abono líquido muy usado antes de la 1ª Guerra Mundial consistía en tomar amoníaco gaseoso e inyectarlo dentro del suelo.

Un abono desarrollado antes de la 1ª Guerra Mundial, pero empleado tras ésta, fue el N32, que procede del nitrato amónico y de la urea.

También tenemos como abono líquido el N20 , procedente del nitrato amónico y agua, que también comenzó a usarse sobre 1950. Los fertilizantes de mezcla química se caracterizan por su consistencia, ya que los elementos componentes son fusionados químicamente a altas temperaturas usando complejos procesos y aditamentos como azufre, ácido sulfúrico y otros minerales. Si bien tienen un costo más elevado, la calidad por consistencia es considerable.

Clasificación de abonos químicos

Se pueden clasificar en Sólidos y Líquidos.

Dentro de los abonos químicos sólidos encontramos los abonos simples (un solo nutriente), compuestos ( más de un nutriente ) y blending ( mezcla de los anteriores)

Dentro de los abonos químicos líquidos encontramos los abonos simples y los compuestos.

Ejemplos:

  • KNO3
  • (NH2)2CO
  • (NH4)2H2PO4

La mayoría de los abonos compuestos que se encuentran en el mercado son en realidad Blending. La diferencia entre Blending y abono compuesto es que el primero se puede separar físicamente. ( ej, mientras que la urea es blanca el DAP son cristales que pueden verse con lupa, por tanto DAP es en realidad un Blending).

Generalmente los abonos líquidos son abonos compuestos porque no pueden separarse fácilmente.

Impactos ambientales potenciales

Los impactos socioeconómicos positivos de esta industria son obvios: los fertilizantes son críticos para lograr el nivel de producción agrícola necesario para alimentar la población mundial, rápidamente creciente. Además, hay impactos positivos indirectos para el medio ambiente natural que provienen del uso adecuado de estas sustancias; por ejemplo, los fertilizantes químicos permiten intensificar la agricultura en los terrenos existentes, reduciendo la necesidad de expandirla hacia otras tierras que puedan tener usos naturales o sociales distintos.

Sin embargo, los impactos ambientales negativos de la producción de fertilizantes pueden ser severos. Las aguas servidas constituyen un problema fundamental. Pueden ser muy ácidas o alcalinas y, dependiendo del tipo de planta, pueden contener algunas sustancias tóxicas para los organismos acuáticos, si las concentraciones son altas: amoníaco o los compuestos de amonio, urea de las plantas de nitrógeno, cadmio, arsénico, y fósforo de las operaciones de fosfato, si está presente como impureza en la piedra de fosfato. Además, es común encontrar en los efluentes, sólidos totales suspendidos, nitrato y nitrógeno orgánico, fósforo, potasio, y (como resultado), mucha demanda de oxígeno bioquímico (DOB5); y, con la excepción de la demanda de oxígeno bioquímico, estos contaminantes ocurren también en las aguas lluvias que escurren de las áreas de almacenamiento de los materiales y desechos. Es posible diseñar plantas de fosfato de tal manera que no se produzcan descargas de aguas servidas, excepto en el caso del rebosamiento de una piscina de evaporación durante las temporadas de excesiva lluvia, pero esto no siempre es práctico.

Los productos de fertilizantes terminados también son posibles contaminantes del agua; su uso excesivo e inadecuado puede contribuir a la eutrofización de las aguas superficiales o contaminación con nitrógeno del agua freática. Además, la explotación de fosfato puede causar efectos negativos. Estos deben ser tomados en cuenta, cuando se predicen los impactos potenciales de proyectos que incluyan las operaciones de extracción nueva o expandida, sea que la planta está situada cerca de la mina o no (ver la sección: "Extracción y Procesamiento de Minerales").

Los contaminantes atmosféricos contienen partículas provenientes de las calderas, trituradores de piedra de fosfato, fósforo (el contaminante atmosférico principal que se originan en las plantas de fosfato), neblina ácida, amoníaco, y óxidos de azufre y nitrógeno. Los desechos sólidos se producen principalmente en las plantas de fosfato, y consisten usualmente en ceniza (si se emplea carbón para producir vapor para el proceso), y yeso (que puede ser considerado peligroso debido a su contenido de cadmio, uranio, gas de radón y otros elementos tóxicos de la piedra de fosfato).

La fabricación y manejo de ácido sulfúrico y nítrico representa un riesgo de trabajo y peligro para la salud, muy grande. Los accidentes que producen fugas de amoníaco pueden poner en peligro no solamente a los trabajadores de la planta, sino también a la gente que vive o trabaja en los lugares aledaños. Otros posibles accidentes son las explosiones, y las lesiones de ojos, nariz, garganta y pulmones.

Como algunos de los impactos que se han mencionado pueden ser evitados completamente, o atenuados más exitosamente a menor costo, si se escoge el sitio con cuidado. (ver, conjuntamente con este capítulo: "Ubicación de Plantas y Desarrollo de Parques Industriales"

Sin embargo se debe entender el aprovechamiento del empleo de fertilizantes orgánicos, y lo mismo que de minerales, como un modo importante de intervención del hombre en el ciclo de sustancias de la agricultura. A través de los animales cuyos excrementos son aprovechados, pasan nitrógeno, fósforo, potasio y otros nutrientes a los excrementos.

Temas especiales

Desechos sólidos

Los desechos sólidos son aquellos que están considerados como un peligro para nuestra salud y la de nuestras familias. Algunos de estos desechos, son alimentos que se dejan tirados a la intemperie, siendo estos orgánicos tienden a descomponerse fácilmente, por lo que se irán acumulando y produciendo un mal olor, o bien, enfermedades.

Reducción de los desperdicios

Se emplean importantes cantidades de agua en la industria de fertilizantes, para los procesos, enfriamiento, y operación de los equipos de mitigación de la contaminación. Los desechos líquidos se originan en los procesos, torres de enfriamiento y purgación de las calderas, causando derrames, fugas y escurrimiento. Sin embargo, existe la oportunidad de reutilizar estas aguas dentro de las plantas, y reducir las demandas de la planta sobre las existencias locales. Por ejemplo, el agua servida que proviene de la producción de ácido fosfórico puede ser utilizada, nuevamente, como agua de proceso en la misma planta. Otras aguas servidas pueden ser empleadas en los condensadores, lavadores de gases y sistemas de enfriamiento.

El yeso de las plantas de fertilizantes de fosfato, puede ser utilizado en la fabricación de cemento y producción de bloques para la construcción, y planchas de yeso. Además, se utiliza el yeso para cubrir los rellenos sanitarios. Si está contaminado con metales tóxicos o material radiactivo, requerirá un tratamiento especial.

Las empresas de agua potables de los Estados Unidos emplean ácido hidrofluosilícico ampliamente, para fluorización porque, como desecho de la producción de fertilizantes de fosfato, es mucho menos costoso que fluoruro de sodio. Se transporta el ácido grandes distancias en los Estados Unidos, pero, en general, su exportación no es económicamente atractiva. Sin embargo, pueden presentarse circunstancias en las que pueda ser reutilizado por un país en desarrollo, especialmente después de convertirlo en una sal de sodio. Además, el ácido puede ser utilizado para producir fluoruro de aluminio.

Amoníaco

La producción, uso y almacenamiento de amoníaco requiere un diseño acertado, buen mantenimiento y monitorización, para reducir al mínimo el riesgo de fugas o explosiones accidentales. Es esencial tener un plan de contingencia para proteger al personal de la planta y las comunidades aledañas. El amoníaco se puede aplicar directamente al suelo por medio de tractores equipados con mangueras o tubos inyectores. En almacenamiento tiene comportamiento de sustancia líquida, por lo que el nitrógeno inyectado al suelo tiene escaso nivel de fuga al medio ambiente. En grandes plantaciones de caña de azúcar, la fertilización con amoníaco es más eficiente que aplicar urea u otro fertilizante sólido con nitrógeno.

Alternativas del Proyecto

Tipos De Just For Men

Los temas generales que han de ser considerados durante la selección del sitio para una planta industrial destinada a la producción de fertilizantes se presentan en la sección: "Ubicación de Plantas y Desarrollo de Parques Industriales". La naturaleza de la producción de fertilizantes es tal que los impactos sobre la calidad del agua, y los de la extracción de las materias primas y transporte de los materiales al granel a la planta y fuera de ésta, merecen especial atención durante la evaluación de los sitios alternativos. Si la calidad de las aguas de recepción es inferior, o el caudal es insuficiente, son inadecuadas, han para recibir los efluentes bien tratados. Si la demanda de materia prima para una planta de fosfato requiere la apertura de canteras adicionales, éstas deben ser identificadas (si son conocidas), y sus impactos ambientales deben ser considerados como parte del proyecto.

Proceso de fabricación

Aunque existe una variedad de alternativas para la planificación y ejecución de los proyectos, generalmente, las materias primas que están disponibles y la demanda para los productos terminados específicos, limitan el tipo de proceso de fabricación de fertilizantes que se puede utilizar. Al tratarse de un proceso de ácido fosfórico, la calidad del subproducto de yeso puede ser un parámetro: el proceso hemihidrato puede producir yeso que sirva, directamente, como aditivo para la fabricación de cemento.

Las plantas de coquificación de hierro y acero son una fuente de materia prima alternativa, pero limitada, para la producción de fertilizantes de sulfato de amonio (producido de amoníaco y ácido sulfúrico); el sulfato de amoníaco es un subproducto de la producción de coque, y también de la producción de caprolactam (nylon). El gas natural, el petróleo, la nafta y el carbón son materias primas alternativas para la producción de amoníaco. El azufre y las piritas son opciones para la producción de ácido sulfúrico.

El gas natural, el petróleo y el carbón son diferentes combustibles que pueden servir para generar vapor en las plantas de fertilizantes.

Control de la contaminación atmosférica

Se deben considerar las siguientes medidas para controlar las emisiones atmosféricas que emanan de las operaciones de las plantas: diseño del proceso y selección de los equipos, precipitadores electrostáticos, lavadores de los gases de escape, filtros y ciclones.

Control de la calidad del agua

Se puede controlar la contaminación del agua causada por la descarga de efluentes o el escurrimiento proveniente de las pilas de desechos, si el monitoreo es adecuado. El diseño del proyecto debe contemplar las siguientes opciones, con respecto al tratamiento de las aguas servidas y de enjuague:

  • reutilización de las aguas servidas;
  • intercambio iónico o filtración de membrana (plantas de ácido fosfórico);
  • neutralización de las aguas servidas ácidas o alcalinas;
  • sedimentación, floculación y filtración de los sólidos suspendidos;
  • uso de las aguas servidas para riego;
  • tratamiento biológico (nutrificación-desnutrificación).

Administración y capacitación

Los impactos potenciales de los procesos de fabricación de fertilizantes sobre el aire, el agua y el suelo, implican la necesidad de tener un apoyo institucional, para asegurar que sea eficiente, la supervisión del manejo de los materiales, y para controlar la contaminación y reducir los desperdicios. Se debe capacitar al personal de la planta en las técnicas empleadas para controlar la contaminación del aire y el agua. A menudo, los fabricantes de los equipos, provienen la capacitación necesaria en cuanto a su operación y mantenimiento. Se deben establecer procedimientos normales de operación de la planta, para que sean implementados por la gerencia. Estos deben incluir la operación de los equipos que controlan la contaminación, requerimientos en cuanto a la monitorización de la calidad del aire y el agua, instrucciones a los operadores a fin de prevenir las emisiones malolientes, y directrices con respecto a la notificación de las autoridades competentes en el caso de una descarga casual de contaminantes. Se debe mejorar el manejo de las sustancias tóxicas y peligrosas mediante el uso de detectores alarmas etc y capacitación especial ara el personal operativo.

Son necesarios los procedimientos de emergencia a fin de implementar acción rápida y efectiva en el caso de que ocurran accidentes, (p.ej., derrames, incendios y/o explosiones mayores), que representen graves riesgos para el medio ambiente o la comunidad circundante. Frecuentemente, los funcionarios y agencias del gobierno local, así como los servicios comunitarios (médicos, bomberos, etc.), juegan un papel clave en este tipo de emergencia; por eso, deben ser incluidos en el proceso de planificación. Los ejercicios periódicos son componentes importantes de los planes de respuesta. (Ver la sección: "Manejo de Peligros Industriales", para mayores detalles.)

Se deben establecer e implementar normas de salud y seguridad en la planta, incluyendo las siguientes:

  • Provisiones para prevenir y responder a fugas casuales de amoníaco o derrames fortuitos de Ácido sulfúrico, fosfórico o nítrico;
  • Procedimientos para reducir al mínimo el peligro de explosión del nitrato de calcio y amonio;
  • Procedimientos para asegurar que la exposición a los vapores de amoníaco y óxido de nitrógeno (plantas de fertilizantes nitrogenados), a los vapores de di y trióxido de azufre, y a la neblina de ácido sulfúrico, sea inferior a las normas fijadas por el Banco Mundial;
  • Un programa de exámenes médicos rutinarios;
  • Capacitación permanente sobre la salud y seguridad en la planta, y buenas prácticas de limpieza ambiental;

(Para mayores detalles, ver Occupational Health and Safety Guidelines del Banco Mundial, y los siguientes capítulo: "Manejo de Peligros Industriales", "Manejo de Materiales Peligrosos", y Ubicación de Plantas y Desarrollo de Parques Industriales.")

Se deben fijar normas para las emisiones y efluentes de la planta, de acuerdo con los reglamentos nacionales, si existen; caso contrario, deben establecerse de acuerdo a los lineamientos del Banco Mundial. Las agencias gubernamentales que tienen la responsabilidad de monitorear la calidad del aire y el agua, operar los equipos de control de la contaminación, implementar las normas, y vigilar las actividades de eliminación de desperdicios, pueden requerir capacitación especializada y deben tener la autoridad y equipos necesarios. La evaluación ambiental debe incluir la valorización de la capacidad local en este respecto, y recomendar la incorporación, en el proyecto, de los elementos apropiados de asistencia.

Monitoreo

Los planes específicos de monitoreo de las plantas de fertilizantes y los sitios dependen del caso y deben incluir:

  • la opacidad del gas de la chimenea en forma continua;
  • pruebas periódicas (plantas de fosfato, solamente) para detectar las emisiones de partículas, compuestos de flúor, óxidos de nitrógeno, dióxido de azufre;
  • control de los óxidos de azufre en las plantas de ácido sulfúrico y de los óxidos de nitrógeno de las de ácido nítrico;
  • pruebas periódicas (plantas de nitrógeno, solamente) para verificar las emisiones de partículas, amoníaco y óxidos de nitrógeno;
  • parámetros del proceso (continuo) que verifiquen la operación de los equipos que controlan la contaminación atmosférica (p.ej., los registros de la temperatura del gas de la chimenea indicarán si los lavadores están fuera de servicio);
  • la calidad del aire del lugar de trabajo para detectar los siguientes contaminantes, según el tipo de planta y proceso: óxidos de nitrógeno, amoníaco, dióxido de azufre, compuestos de fluoro y partículas;
  • la calidad del aire ambiental alrededor de las plantas para verificar la presencia de los contaminantes correspondientes;
  • la calidad de las aguas de recepción, aguas abajo, para controlar la presencia de oxigeno disuelto y los contaminantes correspondientes;
  • el control del pH (continuo) de las corrientes de desechos líquidos, así como los sólidos totales suspendidos o disueltos, amoníaco, nitratos, nitrógeno orgánico, fósforo, Demanda de Oxigeno Bioquímico (DOB5), aceite y grasa (si se utiliza aceite combustible);
  • las descargas de agua lluvia para detectar la presencia de fósforo, compuestos de fluoro, sólidos totales suspendidos y el pH;
  • yeso para controlar el contenido de cadmio y otros metales pesados y radioactividad;
  • las áreas de trabajo de todas las plantas, a fin de control los niveles de ruido;
  • el pH de las aguas de recepción, así como los sólidos totales suspendidos, y la calidad del aire ambiental para controlar la presencia de partículas;
  • las pilas de acopio de yeso y las piscinas, para controlar el escurrimiento e infiltración;
  • inspecciones para asegurar que se cumplan los procedimientos de seguridad y de control de la contaminación, así como los programas adecuados de mantenimiento.

Véase también

Referencias

  1. «Materias Primas». Consultado el 2011.
  2. «Macronutrientes primarios.». Consultado el 2011.
  3. «Macronutrientes secundarios.». Consultado el 2011.
  4. «Micronutrientes». Consultado el 2011.
  5. «Planta de Fabricación de Abono Complejo». Consultado el 2011.

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Нужно решить контрольную?
Sinónimos:

Mira otros diccionarios:

  • fertilizante — adjetivo,sustantivo masculino 1. Que sirve para fertilizar: sustancia fertilizante. El abono es un fertilizante. Esta empresa fabrica fertilizantes …   Diccionario Salamanca de la Lengua Española

  • fertilizante — adj. 2 g. s. 2 g. Que é próprio para fertilizar …   Dicionário da Língua Portuguesa

  • fertilizante — (Del ant. part. act. de fertilizar). adj. Que fertiliza. U. t. c. s. m.) …   Diccionario de la lengua española

  • fertilizante — {{#}}{{LM F17601}}{{〓}} {{SynF18057}} {{[}}fertilizante{{]}} ‹fer·ti·li·zan·te› {{《}}▍ adj.inv.{{》}} {{<}}1{{>}} Que fertiliza. {{《}}▍ s.m.{{》}} {{<}}2{{>}} Sustancia que fertiliza o que hace productiva la tierra: • El estiércol es un… …   Diccionario de uso del español actual con sinónimos y antónimos

  • Fertilizante — ► adjetivo 1 AGRICULTURA Que fertiliza o sirve para fertilizar. ► sustantivo masculino 2 AGRICULTURA, QUÍMICA Abono, productos o sustancias químicas que se utilizan para fertilizar: ■ es recomendable usar fertilizantes en invierno. * * *… …   Enciclopedia Universal

  • fertilizante — (m) (Intermedio) sustancia que favorece el cultivo de las plantas Ejemplos: Los fertilizantes químicos dañan el medio ambiente. El guano a veces se vende como fertilizante. Sinónimos: abono …   Español Extremo Basic and Intermediate

  • fertilizante — s m y adj Sustancia con la que se abona la tierra y se fertiliza: un fertilizante fosfatado, fertilizantes químicos, productos fertilizantes …   Español en México

  • fertilizante — Materia natural o elaborada que se añade a los suelos para suministrar los elementos químicos necesarios para mejorar o aumentar sus rendimientos. Sustancia que se añade al suelo para aportarle los nutrientes que necesita a fin de que las plantas …   Diccionario ecologico

  • fertilizante — sustantivo masculino abono. * * * Sinónimos: ■ abono, estiércol, nitrato, superfosfato, mantillo, humus, guano …   Diccionario de sinónimos y antónimos

  • fertilizante — p. a. de fertilizar. Producto que se usa para fertilizar …   Diccionario Castellano

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”