Fibrado asociado


Fibrado asociado

Fibrado asociado

En matemáticas, la teoría de los fibrados con un grupo de estructura G (un grupo topológico) permite una operación de creación de un fibrado asociado, en el cual la fibra típica de un fibrado cambia de F1 a F2, que son ambos espacios topológicos con una acción de grupo de G.

Contenido

Un ejemplo

Un caso simple es la cinta de Möbius, para la cual G es un grupo cíclico de orden 2. Podemos tomar como F cualesquiera entre: la recta real R, el intervalo [-1, 1], la recta real menos el punto 0, o el conjunto de dos puntos {-1, 1}. La acción de G en éstos (el elemento no-identidad actúa como x - > -x en cada caso) es semejante, en un sentido intuitivo. Podríamos decir más formalmente en términos de pegar dos rectángulos [-1, 1]xI y [-1, 1]xJ juntos: lo que realmente necesitamos son los datos para identificar [-1, 1] a sí mismo directamente en un extremo, y con torcedura en el otro extremo. Estos datos se pueden anotar como función de pegado, con valores en G. La construcción del fibrado asociado es precisamente la observación de que estos datos trabajan del mismo modo en {-1, 1} cuanto en [-1, 1].

Caso general

En general es suficiente para explicar la transición de un fibrado con la fibra F, en la cual G actúa, al fibrado principal (es decir el fibrado donde la fibra es G, considerado actuando sobre sí mismo por traslación). Porque entonces podemos ir de F1 a F2, vía el fibrado principal. Los detalles en términos de los datos para un cubrimiento abierto se dan como caso de descenso.

Relación con subgrupos

Un caso muy útil es tomar un subgrupo H de G. Entonces un H-fibrado tiene un G-fibrado asociado: esto es trivial para los fibrados, pero mirar sus secciones es esencialmente la construcción de la representación inducida, bajo otro enfoque. Esto sugiere que hay algunos funtores adjuntos implicados.

Complexificando un fibrado vectorial real

Una aplicación es complexificar un fibrado vectorial real (según lo requerido para definir las clases de Pontryagin, por ejemplo). Si tenemos un fibrado vectorial real V, y deseamos crear el fibrado asociado con fibras de espacio vectorial complejo, debemos tomar H = GLn(R) y G = GLn(C), esquemáticamente.

La reducción del grupo de estructura

El concepto compañero de los fibrados asociados es la reducción del grupo de estructura de un G-fibrado B. Preguntamos si hay un H-fibrado C, tal que el G-fibrado asociado es B, módulo un isomorfismo. Más concretamente, se pregunta si los datos de transición para B se pueden escribir consistentemente a valores en H. Es decir, pedimos identificar la imagen del mapa fibrado asociado (el cuál es realmente un funtor).

Ejemplos de reducción de grupo

Ejemplos para los fibrados vectoriales incluyen: la introducción de una métrica (equivalentemente, reducción al grupo ortogonal del GLn); y la existencia de una estructura compleja en un fibrado real (de GL2n(R) a GLn(C)).

Otro caso importante es la reducción de GLn(R) a GLk(R)xGLn-k(R), el último interior al primero como matrices de bloque. Una reducción aquí es una manera consistente de tomar subespacios complementarios k- y n-k-dimensionales; es decir encontrando una descomposición de un fibrado vectorial V como una suma de Whitney (suma directa) de los sub-fibrados de fibras de dimensiones especificadas.

Uno puede también expresar la condición para una foliación que se definirá como reducción del fibrado tangente a un subgrupo de matrices de bloque - pero aquí la reducción es solamente una condición necesaria, habiendo una condición de integrabilidad de modo que se aplique el teorema de Frobenius.

Fibrados espinoriales

El lenguaje de fibrados asociados es útil para expresar el significado de los fibrados espinoriales. Aquí los dos grupos SO y Spin están implicados (para una elección fija de signatura (p, q)), el anterior teniendo una representación fiel matricial de dimensión n = p + q, pero el último actuando (en general) fielmente solamente en una dimensión más alta, en un espacio de espinores. Spin es un "double cover" de SO, de modo que el último es un cociente del primero. Eso significa que los datos de transición con valores en Spin dan lugar a datos de transición para SO, automáticamente: el pasar a un grupo cociente pierde simplemente información. Por lo tanto un Spin-fibrado da lugar siempre a un fibrado asociado con las fibras Rn, puesto que Spin actúa en Rn, vía su cociente SO. Inversamente, hay un problema de levantamiento para los SO-fibrados: hay un problema de consistencia sobre los datos de transición, al pasar a un Spin-fibrado. La existencia de tal estructura de espín es información adicional sobre un fibrado real vectorial.

Obtenido de "Fibrado asociado"

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Fibrado asociado — En matemáticas, la teoría de los fibrados con un grupo de estructura G (un grupo topológico) permite una operación de creación de un fibrado asociado, en el cual la fibra típica de un fibrado cambia de F1 a F2, que son ambos espacios topológicos… …   Enciclopedia Universal

  • Fibrado principal — Saltar a navegación, búsqueda En matemática, un G fibrado principal es una clase especial de fibrado para la cual las fibras son todas espacios homogéneos principales respecto a un grupo topológico. Los G fibrados principales son G fibrados en el …   Wikipedia Español

  • Fibrado — Saltar a navegación, búsqueda En topología, un fibrado (o haz fibrado) es una función continua sobreyectiva π, de un espacio topológico E a otro espacio topológico B, satisfaciendo otra condición que lo hace de una forma particularmente simple… …   Wikipedia Español

  • Fibrado de espinores — Saltar a navegación, búsqueda Un fibrado de espinores es un fibrado vectorial de tipo SO(p, q) sobre una variedad diferenciable M dotada con una tétrada de signatura (p,q) tal que su fibra es una representación espinorial de Spin(p, q) ( double… …   Wikipedia Español

  • Fibrado vectorial — Saltar a navegación, búsqueda En matemáticas, un fibrado vectorial es una construcción geométrica donde a cada punto de un espacio topológico (o variedad, o variedad algebraica) unimos un espacio vectorial de una manera compatible, de modo que… …   Wikipedia Español

  • Conexión de Cartan — En matemática, la construcción de la conexión de Cartan en geometría diferencial es una generalización amplia del concepto de la conexión, basado en una comprensión del papel del grupo afín en el acercamiento usual. Fue desarrollado por Élie… …   Wikipedia Español

  • Marco móvil — En matemáticas, un marco móvil o base móvil (también llamado n edro o bastidor) es un objeto matemático definido sobre los puntos de una variedad diferenciable. Concretamente un marco móvil o n edro es un cojunto de n campos vectoriales… …   Wikipedia Español

  • Teoría de campo de gauge — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Formalismo de Cartan — Saltar a navegación, búsqueda Esta página cubre notaciones y definiciones, a veces llamadas el formalismo de Cartan, para el concepto de la conexión de Cartan. Contenido 1 Vierbeins, etcetera 1.1 los ingredientes básicos 1.2 …   Wikipedia Español

  • Introducción matemática a la relatividad general — La teoría de la relatividad general es una teoría métrica de la gravitación que incorpora además una descripción básica de los sistemas de referencia totalmente generales. Matemáticamente la teoría de la relatividad describe los efectos del campo …   Wikipedia Español