Álgebra abstracta


Álgebra abstracta
Archivo:Álgebra Moderna - Birkhoff y MacLane.jpg
Es la exposición de una doctrina tan esencialmente abstracta sin que resulte árida para el lector no especialmente preparado. Obra maestra del método y claridad didáctica. Por todo ello tuvo un éxito alcanzando 12 sucesivas ediciones del texto americano; igualmente la traducción implicó un buen aporte para la enseñanza del Álgebra Moderna.

El álgebra abstracta es el campo de la matemática que estudia las estructuras algebraicas como las de grupo, anillo, cuerpo o espacio vectorial. Muchas de estas estructuras fueron definidas formalmente en el siglo XIX, y, de hecho, el estudio del álgebra abstracta fue motivado por la necesidad de más exactitud en las definiciones matemáticas. El estudio del álgebra abstracta ha permitido observar con claridad lo intrínseco de las afirmaciones lógicas en las que se basan todas la matemática y las ciencias naturales, y se usa hoy en día prácticamente en todas las ramas de la matemática. Además, a lo largo de la historia, los algebristas descubrieron que estructuras lógicas aparentemente diferentes muy a menudo pueden caracterizarse de la misma forma con un pequeño conjunto de axiomas.

El término álgebra abstracta se usa para distinguir este campo del álgebra elemental o del álgebra de la escuela secundaria que muestra las reglas correctas para manipular fórmulas y expresiones algebraicas que conciernen a los números reales y números complejos. El álgebra abstracta fue conocida durante la primera mitad del siglo XX como álgebra moderna.

Historia y Ejemplos

Históricamente, las estructuras algebraicas surgen en algún otro campo distinto a la propia álgebra. Posteriormente, han sido axiomatizadas y luego estudiadas de propio derecho en dicho marco. Por eso, esta materia tiene numerosas y fructíferas conexiones con todas las demás ramas de la matemática.

Algunos ejemplos de estructura algebraica con una sola operación matemática son los:

Otros ejemplos más complejos son:

El álgebra universal es un campo de las matemáticas que provee del formalismo para comparar las diferentes estructuras algebraicas.

Un ejemplo

El estudio sistemático del álgebra ha permitido a los matemáticos llevar bajo una descripción lógica común conceptos aparentemente distintos. Por ejemplo, podemos considerar dos operaciones bastante distintas: la composición de aplicaciones, f(g(x)), y el producto de matrices, AB. Estas dos operaciones son, de hecho, la misma. Podemos ver esto, informalmente, de la siguiente forma: multiplicar dos matrices cuadradas (AB) por un vector de una columna, x. Esto, de hecho, define una función que es equivalente a componer Ay con Bx Ay = A(Bx) = (AB)x. Las funciones bajo composición y las matrices bajo multiplicación forman estructuras llamados monoides. Un monoide bajo operación es asociativo para todos sus elementos ((ab)c = a(bc)) y contiene un elemento e tal que, para cualquier valor de a, ae = ea = a.

Enlaces externos

  • John Beachy: Abstract Algebra On Line, Lista de definiciones y teoremas, en inglés.
  • Joseph Mileti: Mathematics Museum: Abstract Algebra, una buena introducción a la materia en términos sencillos, en inglés.

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Álgebra abstracta — El álgebra abstracta es el campo de las matemáticas que estudia las estructuras algebraicas como la de grupo, anillo y cuerpo. El término «álgebra abstracta» es usado para distinguir este campo del álgebra elemental o del álgebra de la «escuela… …   Enciclopedia Universal

  • Álgebra homológica — El álgebra homológica es un campo de las matemáticas que estudia la homología en un marco algebraico general. Es una disciplina relativamente joven, cuyos orígenes pueden remontarse a investigaciones en topología combinatoria (un precursor de la… …   Wikipedia Español

  • Álgebra de Jordan — En álgebra abstracta, el álgebra de Jordan es un álgebra sobre un cuerpo (no necesariamente asociativa) cuya multiplicación satisface los siguientes axiomas: xy = yx (ley conmutativa) (xy)(xx) = x(y(xx)) (Identidad de Jordan). El producto de los… …   Wikipedia Español

  • Álgebra conmutativa — En álgebra abstracta, el álgebra conmutativa es el campo de estudio de los anillos conmutativos, sus ideales, módulos y álgebras. Es una materia fundacional tanto para la geometría algebraica como para la teoría algebraica de números. Se… …   Wikipedia Español

  • Álgebra — Para los usos matemáticos de la palabra álgebra como estructura algebraica, véase álgebra no asociativa, álgebra asociativa, álgebra sobre un cuerpo. El álgebra es la rama de las matemáticas que estudia las estructuras, las relaciones y las… …   Wikipedia Español

  • Álgebra sobre un cuerpo — En matemáticas, un álgebra sobre un cuerpo K, o una K álgebra, es un espacio vectorial A sobre K equipado con una noción compatible de multiplicación de elementos de A. Una generalización directa admite que K sea cualquier anillo conmutativo.… …   Wikipedia Español

  • Álgebra asociativa — En matemáticas, un álgebra asociativa es un módulo que también permite la multiplicación de vectores de manera distributiva y asociativa. Contenido 1 Definición general 2 Caso especial en el que el anillo es un cuerpo 2.1 Ejemplos …   Wikipedia Español

  • Álgebra elemental — El álgebra elemental es una fundamental y relativamente básica forma de álgebra enseñada a los estudiantes que se presumen tienen poco o nada de conocimiento formal de las matemáticas más allá de la aritmética. Mientras que en aritmética solo… …   Wikipedia Español

  • Álgebra tensorial — Este artículo o sección tiene un estilo difícil de entender para los lectores interesados en el tema. Si puedes, por favor edítalo y contribuye a hacerlo más accesible para el público general, sin eliminar los detalles técnicos que interesan a… …   Wikipedia Español

  • Álgebra graduada — En matemáticas, en particular en álgebra abstracta, un álgebra graduada es un álgebra sobre un cuerpo, o más en general R álgebra, en la cual hay una noción consistente del peso de un elemento. La idea es de que los pesos de los elementos se… …   Wikipedia Español