Maquinabilidad


Maquinabilidad

La maquinabilidad es una propiedad de los materiales que permite comparar la facilidad con que pueden ser mecanizados por arranque de viruta. Los materiales con mejor maquinabilidad requieren potencias y fuerzas de corte reducidas, con un desgaste lento de los filos de corte y pueden mecanizarse obteniendo superficies menos rugosas y, en general, con un mejor acabado. Además, otro factor que indica una buena maquinabilidad de un material es la posibilidad de poder controlar fácilmente la longitud de la viruta resultante. Las virutas largas y delgadas pueden enredarse e interferir en las operaciones de corte.

Los factores que suelen mejorar la resistencia de los materiales a menudo degradan su maquinabilidad. Por lo tanto, para una mecanización económica, los ingenieros se enfrentan al reto de mejorar la maquinabilidad sin perjudicar la resistencia del material.

Es difícil establecer relaciones que definan cuantitativamente la maquinabilidad de un material, pues las operaciones de mecanizado tienen una naturaleza compleja. En algunos casos, la dureza y la resistencia del material se consideran como los principales factores a evaluar. Los materiales duros son generalmente más difíciles de mecanizar pues requieren una fuerza mayor para cortarlos. Sobre estos factores influyen propiedades del material como su composición química, conductividad térmica y su estructura microscópica. A veces, sobre todo para los no metales, estos factores auxiliares son más importantes. Por ejemplo, los materiales blandos como los plásticos pueden ser difíciles de mecanizar a causa de su mala conductividad térmica.

Contenido

Calificación de la maquinabilidad

Hay muchos factores que afectan a la maquinabilidad, pero no hay un consenso en la forma de cuantificarla. En lugar de ello, a menudo la maquinabilidad se evalúa caso por caso y las pruebas se adaptan a las necesidades específicas de una fábrica. Las medidas más comunes para efectuar una comparación de maquinabilidad son la vida de la herramienta, el acabado superficial, la temperatura de corte y el consumo de energía.[1]

Existen tablas y gráficos que proporcionan una referencia para comparar la maquinabilidad de materiales diferentes, pero son necesariamente imprecisas debido a la multitud de variables de proceso y otros factores externos que pueden tener una influencia significativa. Estas tablas suelen medir la maquinabilidad en términos de velocidad de corte para una determinada vida útil de la herramienta. Por ejemplo, la maquinabilidad relativa podría darse como

Vc_{60, 1} \over Vc_{60, 2},

donde Vc60 es la velocidad de corte para una vida útil de la herramienta de 60 minutos.[2] Las pruebas de maquinabilidad más conocidas fueron las llevadas a cabo por Frederick W. Taylor y dieron lugar a lo que se conoce como ecuación de Taylor que relaciona la velocidad de corte con la vida de la herramienta.[3]

Habitualmente se toma como material de referencia el acero AISI 1112 (resulfurado), al que se le da la calificación de 100.

Maquinabilidad de acero

MAQUINABILIDAD DE LOS ACEROS

Debido a que los aceros son de los metales más importantes en ingeniería, se ha estudiado en forma extensa su maquinabilidad.la maquinabilidad de los aceros se ha mejorado, principalmente agregándose plomo y azufre para obtener los llamados aceros libres-maquinado, o aceros de maquinado libre.


Aceros resulfurados y refosforados.

El azufre en los aceros forma inclusiones de sulfuro de manganeso que actúa como elevadores de esfuerzos en la zona de corte primario. En consecuencia, las virutas producidas se rompen con facilidad y son pequeñas; esto mejora la maquinabilidad. El tamaño, forma, distribución y concentración de estas inclusiones influyen mucho sobre la maquinabilidad. Elementos como el teluro o telurio, así como el selenio, que son químicamente semejantes al azufre, funcionan como modificadores de inclusiones en los aceros resulfurados. El fosforo tiene dos efectos principales sobre los aceros. Fortalece a la ferrita, elevando la dureza. Los aceros más duros dan como resultado mejor formación de viruta y mejor acabado superficial. Nótese que puede ser que los aceros suaves sean difíciles de maquinar, con formación de borde acumulado y mal acabado superficial. El segundo efecto es que la mayor dureza causa la formación de virutas cortas, en lugar de hilos continuos, y con ello mejora la maquinabilidad.


Aceros con plomo

Un gran porcentaje del plomo en los aceros se solidifica en las puntas de las inclusiones de sulfuro de manganeso. En los tipos no resulfurados de acero, el plomo toma la forma de partículas finas dispersar. El plomo es insoluble en el hierro, cobre y aluminio y en sus aleaciones. Por su baja resistencia al corte, en consecuencia, el plomo funciona como lubricante solido y se reparte sobre la interface herramienta-viruta durante el corte.


Aceros desoxidados con calcio

En estos aceros se forman hojuelas de silicatos de calcio. Estas hojuelas, a su vez, reducen la resistencia de la zona secundaria de corte y disminuyen la fricción entre la herramienta y la viruta, así como el desgaste, la temperatura se reduce en consecuencia. Por ello estos aceros producen menor desgaste de cráter, en especial a altas velocidades de corte.


Aceros inoxidables

Los aceros austeniticos (serie 300 o 400) son difíciles de maquinar. El traqueteo puede ser un problema, necesitando maquinas y herramientas con gran rigidez. Sin embargo, los aceros inoxidables ferriticos tienen buena maquinabilidad. Los aceros martensiticos son abrasivos, tienden a forma de borde acumulado y requieren materiales de herramienta con gran dureza en caliente y resistencia al desgaste de cráter. Los aceros inoxidables de endurecimiento por precipitación son fuertes y abrasivos, requieren materiales de herramientas duros y resistentes a la abrasión.

Maquinabilidad del aluminio

Maquinabilidad de otros metales

Maquinabilidad de materiales no metálicos

Referencias

  1. Bakerjian, Ramon; Cubberly, W. H. (1989). Tool and manufacturing engineers handbook. Dearborn, Mich: Society of Manufacturing Engineers. pp. 15-3, 15-10, 19-13 to 19-18. ISBN 0-87263-351-9. 
  2. Bacon, David; Dieter, George Ellwood (1988). Mechanical metallurgy. New York: McGraw-Hill. pp. 698. ISBN 0-07-100406-8. 
  3. Taylor, F.W. (1907). «On the Art of Cutting Metals». Transactions of the ASME 28:  pp. 31-350. 

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Acero — Prensas en acerías. Acerías …   Wikipedia Español

  • Cobre — Para otros usos de este término, véase Cobre (desambiguación). Níquel ← Cobre → Zinc …   Wikipedia Español

  • Fresadora — universal con sus accesorios …   Wikipedia Español

  • Torno — Este artículo se refiere a los tornos utilizados en la industria metalúrgica para el mecanizado de metales. Para otros tipos de tornos y para otras acepciones de esta palabra, véase Torno (desambiguación) Torno paralelo moderno. Se denomina torno …   Wikipedia Español

  • Acero hipereutectoide — Saltar a navegación, búsqueda Artículo principal: Acero Se denomina acero hipereutectoide, aquellos aceros que en su composición y de acuerdo con el diagrama hierro carbono tienen un porcentaje de carbono entre el 0,77% y el 2%. Su constituyente… …   Wikipedia Español

  • Taladradora — «Taladro» redirige aquí. Para otras acepciones, véase Taladro (desambiguación). Taladradora sensitiva de columna. La taladradora es una máquina herramienta donde se mecanizan la mayoría de los agujeros que se hacen a las piezas en los talleres… …   Wikipedia Español

  • Moldeo en grafito — Contenido 1 Moldeo 2 Fundición en moldes desechables de grafito 3 Fundición en moldes permanentes de grafito 4 Fundición colada continua en mo …   Wikipedia Español

  • Acero inoxidable austenítico — Saltar a navegación, búsqueda Artículo principal: Acero Los aceros inoxidables que contienen más de un 7% de níquel se llaman austeníticos, ya que tienen una estructura metalográfica en estado recocido, formada básicamente por austenita y de aquí …   Wikipedia Español

  • Tratamiento térmico — Tratamiento térmico. Se conoce como tratamiento térmico el proceso que comprende el calentamiento de los metales o las aleaciones en estado sólido a temperaturas definidas, manteniéndolas a esa temperatura por suficiente tiempo, seguido de un… …   Wikipedia Español

  • Tren de alambrón — Detalle de un tren de alambre con dos venas de laminación. Vista superior, se aprecia el área de tendido, en donde se realiza la refrigeración por aire. Un tren de laminación de alambre o tren de alambrón es un tipo complejo de instalación de la… …   Wikipedia Español