Módulo (matemática)

Módulo (matemática)

Contenido

Definición

Específicamente, un módulo izquierdo sobre el anillo R consiste en un grupo abeliano (M, +) y una operación R × MM (multiplicación escalar, generalmente escrita sólo por yuxtaposición, es decir como rx para r en R y x en M) tal que

Para todo r, s en R, x, y en M, tenemos

  1. (rs)x = r(sx)
  2. (r+s)x = rx+sx
  3. r(x+y) = rx+ry
  4. 1x = x

Generalmente, escribimos simplemente "un R - módulo izquierdo M" o RM.

Algunos autores[cita requerida] omiten la condición 4 en la definición general de módulos izquierdos, y llaman a las estructuras definidas antes "módulos izquierdos unitales". En este artículo sin embargo, todos los módulos (y todos los anillos) se presuponen unitales. Por lo general, para módulos, en la mayoría de los textos se consiera la condición 4, mientras que para anillos no se supone que exista elemento unidad, excepto que se diga lo contrario.

Un R módulo derecho M o MR se define de forma semejante, sólo que el anillo actúa por la derecha, es decir tenemos una multiplicación escalar de la forma M × RM, y los tres axiomas antedichos se escriben con los escalares r y s a la derecha de x e y.

Si R es conmutativo, entonces los R-módulos a la izquierda son lo mismo que R-módulos a la derecha y se llaman simplemente R-módulos.

Ejemplos

  • Cada grupo abeliano M es un módulo sobre el anillo de los números enteros Z si definimos nx = x + x +... + x (n sumandos) para n > 0, 0 x = 0, y (- n) x = - (nx) para n < 0.
  • Si R es cualquier anillo y n un número natural, entonces el producto cartesiano Rn es un módulo izquierdo y derecho sobre R si utilizamos las operaciones componente a componente. El caso n = 0 da el trivial R-módulo {0} que consiste solamente en el elemento identidad (aditiva).
  • Las matrices cuadradas n-por-n con entradas reales forman un anillo R, y el espacio euclidiano R n es un módulo izquierdo sobre este anillo si definimos la operación de módulo vía la multiplicación de matrices.
  • Si R es cualquier anillo e I es cualquier ideal izquierdo en R, entonces I es un módulo izquierdo sobre R. Análogamente, por supuesto, los ideales derechos son módulos derechos.

Submódulos y homomorfismos

Suponga que M es un R-módulo izquierdo y N es un subgrupo de M. Entonces N es un submódulo (o R-submódulo, para ser más explícito) si, para cualquier n en N y cualquier r en R, el producto rn está en N (o el nr para un módulo derecho). Si M y N son R - módulos, entonces una función f: MN es un homomorfismo de R - módulos si, para cualquier m, n en M y r, s en R,

f (rm + sn) = rf(m) + sf(n).

Esto, como cualquier homomorfismo de objetos matemáticos, es precisamente una función que preserva la estructura de los objetos. Un homomorfismo biyectivo de módulos es un isomorfismo de módulos, y los dos módulos se llaman isomorfos. Dos módulos isomorfos son idénticos para todos los propósitos prácticos, diferenciándose solamente en la notación para sus elementos.

El núcleo de un homomorfismo de módulos f: MN es el submódulo de M que consiste en todos los elementos que son enviados a cero por f. Los teoremas de isomorfía familiares de grupos abelianos y de espacios vectoriales son también válidos para R-módulos.

Los R-módulos izquierdos, junto con sus homomorfismos de módulo, forman una categoría, escrita como RMod. Esta es una categoría abeliana.

Tipos de módulos

Finitamente generado. Un módulo M es finitamente generado si existe un número finito de elementos x1..., xn en M tales que cada elemento de M es una combinación lineal de esos elementos con coeficientes del anillo escalar R.

Libre. Un módulo libre es un módulo que tiene una base, o equivalentemente, uno que es isomorfo a una suma directa de copias del anillo escalar R. Éstos son los módulos que se comportan parecido a los espacios vectoriales.

Proyectivo. Los módulos proyectivos son sumandos directos de módulos libres y comparten muchas de sus propiedades deseables.

Inyectivo. Los módulos inyectivos se definen dualmente a los módulos proyectivos.

Simple. Un módulo simple S es un módulo que no es {0} cuyos únicos submódulos son {0} y S. Los módulos simples a veces se llaman irreducibles.

Indescomponible. Un módulo indescomponible es un módulo diferente a cero que no se puede escribir como una suma directa de dos submódulos diferentes a cero. Cada módulo simple es indescomponible.

Fiel. Un módulo fiel M es uno donde la acción de cada r (distinto de cero) en R es no trivial (es decir, existe algún m en M tal que rm ≠ 0). Equivalente, el anulador de M es el ideal cero.

Noetheriano. Un módulo noetheriano es un módulo tal que cada submódulo es finitamente generado. Equivalente, cada cadena creciente de submódulos llega a ser estacionaria en finitos pasos.

Artiniano. Un módulo artiniano es un módulo en el cual cada cadena decreciente de submódulos llega a ser estacionaria en finitos pasos.

Definición alternativa como representaciones

Si M es un R-módulo izquierdo, entonces la acción de un elemento r en R se define como la función MM que envía cada x al rx (o al xr en el caso de un módulo derecho), y es necesariamente un endomorfismo de grupo del grupo abeliano (M, +). El conjunto de todos los endomorfismos de grupo de M es denotado EndZ(M) y forma un anillo bajo la adición y composición, y enviando un elemento r del anillo R a su acción define realmente un homomorfismo de anillo de R a EndZ(M).

Tal del homorfismo R del anillo → EndZ(M) se llama una representación de R en el grupo abeliano M; una manera alternativa y equivalente de definir R-módulos izquierdos es decir que un R-módulo izquierdo es un grupo abeliano M junto con una representación de R en él.

Una representación se llama fiel si y solamente si la función R → EndZ(M) es inyectiva. En términos de módulos, esto significa que si r es un elemento de R tal que rx = 0 para todo x en M, entonces r = 0. Cada grupo abeliano es un módulo fiel sobre los números enteros o sobre una cierta aritmética modular Z/n Z.

Generalizaciones

Cualquier anillo R se puede ver como categoría preaditiva con un solo objeto. Con esta comprensión, un R-módulo izquierdo es un funtor aditivo (covariante) de R a la categoría Ab grupos abelianos. Los R-módulos derechos son funtores aditivos contravariantes. Esto sugiere que, si C es cualquier categoría preaditiva, un funtor aditivo covariante de C a Ab sea considerado un módulo izquierdo generalizado sobre C; estos funtores forman una categoría de funtores C-Mod que es la generalización natural de la categoría de módulos R-Mod.

Los módulos sobre anillos conmutativos se pueden generalizar en una dirección distinta: tome un espacio anillado (X, OX) y considere los haces de OX-módulos. Éstos forman una categoría OX-Mod. Si X tiene solamente un punto, entonces esto es una categoría de módulo en el viejo sentido sobre el anillo conmutativo OX(X).

Referencias

  • F.W. Anderson y K.R. Fuller: Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13, 2da Ed., Springer-Verlag, New York, 1992

Wikimedia foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Mira otros diccionarios:

  • matemática — ► sustantivo femenino 1 MATEMÁTICAS Disciplina que mediante el razonamiento deductivo estudia las relaciones entre las cantidades y las magnitudes, y las operaciones entre éstas. 2 MATEMÁTICAS Conjunto de las disciplinas matemáticas que se… …   Enciclopedia Universal

  • Módulo — (Del lat. modulus.) ► sustantivo masculino 1 Proporción que se considera perfecta entre las dimensiones de los elementos de un cuerpo. SINÓNIMO canon 2 Modelo que se repite en una serie de cosas iguales: ■ todas las viviendas de la calle repiten… …   Enciclopedia Universal

  • Módulo (vector) — En física, se llama módulo de un vector a la norma matemática del vector de un espacio euclídeo ya sea este el plano euclídeo o el espacio tridimensional. El módulo de un vector es un número que coincide con la longitud del vector en la… …   Wikipedia Español

  • Módulo libre — En matemática, un módulo libre es un módulo que tiene una base libre. Para un R módulo M, el conjunto E = {e1, e2... en} es una base libre para M si y sólo si: 1) E es un conjunto generador para M, es decir cada elemento de M es una suma de… …   Wikipedia Español

  • Aritmética de módulo 2 — La matemática o aritmética de Módulo 2 se refiere a las operaciones sobre números binarios que desperdician o no tienen en cuenta las unidades que se deben llevar al siguiente nivel. Contenido 1 Suma tradicional 2 Matemática modular 2.1 La suma …   Wikipedia Español

  • Grupo (matemática) — En álgebra abstracta, un grupo es un conjunto en el que se define una operación binaria (i.e. un magma), que satisface ciertos axiomas detallados más abajo. La rama de la matemática que estudia los grupos se llama teoría de grupos. Contenido 1… …   Wikipedia Español

  • Bola (matemática) — Saltar a navegación, búsqueda Una bola, en topología y otras ramas de matemática, es el conjunto de puntos que distan de otro igual o menos que una distancia dada, llamada radio. Es un concepto fundamental en el Análisis Matemático. Se distinguen …   Wikipedia Español

  • Magnitud (matemática) — La magnitud es una propiedad que poseen los cuerpos, los fenómenos o las relaciones entre ellos, que permite que puedan ser medidos. Dicha medida, representada por una cantidad, puede ser expresada mediante números basándose en la comparación con …   Wikipedia Español

  • Vector (matemática) — Saltar a navegación, búsqueda Para otros usos de este término, véase vector. En matemáticas, un vector es un elemento de una estructura algebraica llamada espacio vectorial, que es representada gráficamente con una flecha y esencialmente es un… …   Wikipedia Español

  • Cuerpo (matemática) — Saltar a navegación, búsqueda Para otros usos de este término, véase Cuerpo. Un cuerpo o campo es un anillo de división conmutativo, es decir, un anillo conmutativo en el que todo elemento distinto de cero (todo elemento no nulo) es invertible… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”