Perceptrón multicapa


Perceptrón multicapa

Perceptrón multicapa

El perceptrón multicapa es una red neuronal artificial (RNA) formada por múltiples capas, esto le permite resolver problemas que no son linealmente separables, lo cual es la principal limitación del perceptrón (también llamado perceptrón simple). El perceptrón multicapa puede ser totalmente o localmente conectado. En el primer caso cada salida de una neurona de la capa "i" es entrada de todas las neuronas de la capa "i+1", mientras que el segundo, cada neurona de la capa "i" es entrada de una serie de neuronas (región) de la capa "i+1".

Red Neuronal Multicapa

Las capas pueden clasificarse en tres tipos:

  • Capa de entrada: Constituida por aquellas neuronas que introducen los patrones de entrada en la red. En estas neuronas no se produce procesamiento.
  • Capas ocultas: Formada por aquellas neuronas cuyas entradas provienen de capas anteriores y las salidas pasan a neuronas de capas posteriores.
  • Capa de salida: Neuronas cuyos valores de salida se corresponden con las salidas de toda la red.

La propagación hacia atrás (también conocido como retropropagación del error o regla delta generalizada), es un algoritmo utilizado en el entrenamiento de estas redes, por ello, el perceptrón multicapa también es conocido como red de retropropagación (no confundir con la red de contrapropagación).

Contenido

Características

  • Las funciones de transferencia de los elementos de procesado (neuronas) han de ser derivables.

Limitaciones

  • El Perceptrón Multicapa no extrapola bien, es decir, si la red se entrena mal o de manera insuficiente, las salidas pueden ser imprecisas.
  • La existencia de mínimos locales en la función de error dificulta considerablemente el entrenamiento, pues una vez alcanzado un mínimo el entrenamiento se detiene aunque no se haya alcanzado la tasa de convergencia fijada.

Cuando caemos en un mínimo local sin satisfacer el porcentaje de error permitido se puede considerar: cambiar la topología de la red (número de capas y número de neuronas), comenzar el entrenamiento con unos pesos iniciales diferentes, modificar los parámetros de aprendizaje, modificar el conjunto de entrenamiento o presentar los patrones en otro orden.

Aplicaciones

El perceptrón multicapa (de aquí en adelante MLP, MultiLayer Perceptron) se utiliza para resolver problemas de asociación de patrones, segmentación de imágenes, compresión de datos, etc.


Compresión de datos

Considerese un MLP de 3 capas, una de entrada, una oculta y la de salida. La capa de entrada está formada por N neuronas, la capa oculta por M (M < N) neuronas y la capa de salida posee N neuronas al igual que la capa de entrada. Se entrena dicho MLP para que cuando se le de como entrada un vector de datos (x1, x2,..., xN) devuelva ese mismo vector de datos como salida, con ello estamos aprendiendo al MLP a transformar un vector de N componentes en uno de M componentes (recordemos que M < N) y a recuperar el vector original a partir del vector "comprimido".

Una vez que el MLP esté entrenado se procede de la siguiente forma:

  • Compresión: Para comprimir los datos utilizamos un MLP de dos capas, la de entrada con N neuronas y la de salida con M, los pesos de estas dos capas son los de la capa de entrada y oculta respectivamente, del MLP que entrenamos anteriormente.
  • Descompresión: Para descomprimir los datos utilizamos un MLP de dos capas, la de entrada con M neuronas y la de salida con N, los pesos de estas dos capas son los de la capa oculta y la de salida respectivamente, del MLP que entrenamos anteriormente.

El MLP no conseguirá (al menos normalmente) un error nulo durante el entrenamiento, por lo que se trata de un sistema de compresión con pérdidas. Obviamente cuanto mayor queramos que sea el factor de compresión, más error se cometerá.

Obtenido de "Perceptr%C3%B3n multicapa"

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Perceptrón multicapa — En el estudio de la inteligencia artificial, se conoce un perceptrón multicapa como aquella red neuronal artificial (RNA) cuyas neuronas se encuentran distribuidas en capas, de modo que las salidas de todas las neuronas que constituyen una… …   Enciclopedia Universal

  • Perceptrón — Saltar a navegación, búsqueda Perceptrón con 2 entradas El Perceptrón es un tipo de red neuronal artificial desarrollado por Frank Rosenblatt, véase Perceptrón multicapa, también puede entenderse como perceptrón la neurona artificial y unidad… …   Wikipedia Español

  • Red neuronal artificial — perceptrón simple con n neuronas de entrada, m neuronas en su capa oculta y una neurona de escape. Las redes de neuronas artificiales (denominadas habitualmente como RNA o en inglés como: ANN [1] ) so …   Wikipedia Español

  • Conexionismo — El conexionismo es un conjunto de enfoques en los ámbitos de la inteligencia artificial, psicología cognitiva, ciencia cognitiva, neurociencia y filosofía de la mente, que presenta los fenómenos de la mente y del comportamiento como procesos que… …   Wikipedia Español

  • Máquinas de vectores de soporte — Las máquinas de soporte vectorial o máquinas de vectores de soporte (Support Vector Machines, SVMs) son un conjunto de algoritmos de aprendizaje supervisado desarrollados por Vladimir Vapnik y su equipo en los laboratorios AT T. Estos métodos… …   Wikipedia Español

  • Minería de datos — La minería de datos (DM, Data Mining) consiste en la extracción no trivial de información que reside de manera implícita en los datos. Dicha información era previamente desconocida y podrá resultar útil para algún proceso. En otras palabras, la… …   Wikipedia Español

  • Feed-forward — Saltar a navegación, búsqueda El término Feed forward (o proalimentacion) describe un tipo de sistema que reacciona a los cambios en su entorno, normalmente para mantener algún estado concreto del sistema. Un sistema que exhibe este tipo de… …   Wikipedia Español

  • PROMOTER BASED GENETIC ALGORITHM (PBGA) — Saltar a navegación, búsqueda El Promoter Based Genetic Algorithm (PBGA) es un algoritmo genético para neuroevolución desarrollado por F. Bellas y R.J. Duro en la Universidade da Coruña. El PBGA evoluciona una perceptrón multicapa de tamaño… …   Wikipedia Español

  • Promoter Based Genetic Algorithm — El Promoter Based Genetic Algorithm (PBGA) es un algoritmo genético para neuroevolución desarrollado por F. Bellas y R.J. Duro en la Universidade da Coruña. El PBGA evoluciona una perceptrón multicapa de tamaño variable que se codifica en… …   Wikipedia Español

  • ART (RNA) — ART son las siglas en inglés de Teoría de la Resonancia Adaptativa (Adaptive Resonance Theory), desarrollada por Stephen Grossberg y Gail Carpenter. Es un modelo de red neuronal artificial que basa su funcionamiento en la manera en que el cerebro …   Wikipedia Español