Problema de Monty Hall


Problema de Monty Hall

Problema de Monty Hall

En el concurso la búsqueda de un nuevo coche tras las puertas, el jugador elige inicialmente la puerta 1. El presentador le abre la puerta 3 y le revela que hay una cabra y le ofrece la posibilidad de elegir la puerta 2 en vez de la 1.

El problema de Monty Hall es un problema matemático de probabilidad que está inspirado por el concurso televisivo estadounidense Let's Make a Deal (Hagamos un trato). El nombre del problema tiene su origen en el nombre del presentador del concurso: Monty Hall.

Contenido

La premisa

El concursante en el concurso televisivo debe elegir una puerta de entre tres (todas cerradas), el premio consiste en llevarse lo que se encuentra detrás de la elegida. Se sabe con certeza que tras una de ellas se oculta un automóvil, y tras las otras dos hay sendas cabras. Una vez que el concursante haya elegido una puerta y le comunique al público y al presentador su elección, Monty (el presentador) abrirá una de las otras puertas y mostrará que detrás hay una cabra. En este momento se le da la opción al concursante de cambiar, si lo desea, de puerta (tiene dos opciones) ¿Debe el concursante mantener su elección original o escoger la otra puerta? ¿Hay alguna diferencia?

Esa pregunta ha generado un intenso debate. Como la respuesta correcta parece contradecir conceptos básicos de probabilidad, se puede considerar como una paradoja. La respuesta se basa en suposiciones que no son obvias y que no se encuentran expresadas en el plantemiento del problema, por lo que también se puede considerar como una pregunta con trampa.

La premisa original

A continuación se expone el enunciado más famoso del problema, extraído de una carta de Craig F. Whitaker a la columna de Marilyn vos Savant en Parade Magazine en 1990 (como la citan Bohl, Liberatore, y Nydick).

Supón que estás en un concurso, y se te ofrece escoger entre tres puertas: detrás de una de ellas hay un coche, y detrás de las otras, cabras. Escoges una puerta, digamos la nº1, y el presentador, que sabe lo que hay detrás de las puertas, abre otra, digamos la nº3, que contiene una cabra. Entonces te pregunta: "¿No prefieres escoger la nº2?". ¿Es mejor para ti cambiar tu elección?

Éste es una nueva formulación del problema proporcionado por Steve Selvin en una carta a American Statistician (febrero, 1975). Como se ha dicho anteriormente, el problema está inspirado en el concurso televisivo, a pesar de que los concursantes de Let's Make a Deal no tenían opción de cambiar su elección. Como Monty Hall contestó a Selvin [1],

Y si alguna vez vas a mi programa, las reglas también se te aplicarán -- no se permite cambiar de caja después de realizar tu elección.

En la carta posterior de Selvin a American Statistician (Agosto, 1975) aparece la que parece ser la primera mención del término "problema de Monty Hall".

Un problema análogo denominado "problema de los tres prisioneros", apareció en la columna Mathematical Games, de Martin Gardner, en 1959. La versión de Gardner hace el proceso de elección explícito, evitando las suposiciones de la versión original.

La premisa completa

Se ofrece un concurso cuya mecánica es la siguiente:

  • Al concursante se le ofrece la posibilidad de escoger entre tres puertas. Tras una de ellas se encuentra un coche, y tras las otras dos hay una cabra. El concursante gana el premio que se oculta detrás de la puerta que escoja.
  • Después de que el concursante escoja una puerta, el presentador abre una de las otras dos puertas, mostrando una cabra. Siempre puede hacerlo ya que incluso si el concursante ha escogido una cabra, queda otra entre las puertas que ha descartado y el presentador conoce lo que hay detrás de cada puerta.
  • Entonces, ofrece al concursante la posibilidad de cambiar su elección inicial y escoger la otra puerta que descartó originalmente, que continúa cerrada.

La pregunta oportuna es: ¿debe hacerlo o no?

La solución

Suposiciones iniciales

Esta solución se basa en tres suposiciones básicas:

  • que el presentador siempre abre una puerta,
  • que la escoge entre las restantes después de que el concursante escoja la suya,
  • y que tras ella siempre hay una cabra.

Estas suposiciones no se encuentran explícitamente en el enunciado.

Un estudio probabilístico

La probabilidad de que el concursante escoja en su primera oportunidad la puerta que oculta el coche es de 1/3, por lo que la probabilidad de que el coche se encuentre en una de las puertas que no ha escogido es de 2/3. ¿Qué cambia cuando el presentador muestra una cabra tras una de las otras dos puertas?

Una suposición errónea es que, una vez sólo queden dos puertas, ambas tienen la misma probabilidad (un 50%) de contener el coche. Es errónea ya que el presentador abre la puerta después de la elección de jugador. Esto es, la elección del jugador afecta a la puerta que abre el presentador. No es un suceso aleatorio ni inconexo.

Si el jugador escoge en su primera opción la puerta que contiene el coche (con una probabilidad de 1/3), entonces el presentador puede abrir cualquiera de las dos puertas. Además, el jugador pierde el coche si cambia cuando se le ofrece la oportunidad.

Pero, si el jugador escoge una cabra en su primera opción (con una probabilidad de 2/3), el presentador sólo tiene la opción de abrir una puerta, y esta es la única puerta restante que contiene una cabra. En ese caso, la puerta restante tiene que contener el coche, por lo que cambiando lo gana.

En resumen, si mantiene su elección original gana si escogió originalmente el coche (con probabilidad de 1/3), mientras que si cambia, gana si escogió originalmente una de las dos cabras (con probabilidad de 2/3). Por lo tanto, el concursante debe cambiar su elección si quiere maximizar la probabilidad de ganar el coche.

Para matemáticos: Sea X:(Omega, P) → {1,2,3} la puerta aleatoria detrás de la cual se encuentra el coche. Sea Y:(Omega, P) → {1,2,3} la puerta que escoge aleatoriamente el candidato. Las variables aleatorias X e Y son estocásticamente independientes. Sea M: (Omega, P) → {cabra, coche} lo que se encuentra detrás de la puerta que el moderador, de manera aleatoria, escoge (entre las que aún no se han abierto). Se cumple entonces [M=cabra] con probabilidad 1 (o siempre). La probabilidad que el candidato se lleve el coche bajo el supuesto que él no cambia de puerta es entonces P[X=Y|M=cabra]=P[X=Y]=1/3. La probabilidad que el candidato se lleve el coche bajo el supuesto que él cambia de puerta es entonces P[X≠Y|M=cabra]=1-P[X=Y]=2/3. (Esta es la solución correcta.)

Una solución incorrecta se obtiene de la siguiente interpretación: Si, por otro lado, el presentador escoge de manera aleatoria y uniforme entre las puertas que aún no se han abierto, entonces la probabilidad que el candidato se lleve el coche (dado que él no cambia de puerta) es P[X=Y|M=cabra]=P[X=Y]/P[M=cabra]=P[X=Y]/(P[M=cabra|X=Y]P[X=Y] + P[M=cabra|X≠Y]P[X≠Y])=(1/3)/(1/3 + (1/2)*(2/3)) = 1/2. Por lo tanto, 0,5 es la probabilidad que el candidato se lleve el coche (dado que él cambia de puerta), pero esta respuesta no es aplicable a nuestro problema.

¿Por qué sucede esto?

Porque lo que muestra el presentador no afecta a tu elección original, sino sólo a la otra puerta no escogida. Una vez que se abre una puerta y se muestra la cabra, esa puerta tiene una probabilidad de 0 de contener un coche, por lo que deja de tenerse en cuenta. Si el conjunto de dos puertas tenía una probabilidad de contener el coche de 2/3, entonces, si una tiene una probabilidad de 0, la otra debe tener una probabilidad de 2/3. La elección, básicamente, consiste en preguntarte si prefieres seguir con tu puerta original o escoger las otras dos puertas. La probabilidad de 2/3 se traspasa a la otra puerta no escogida (en lugar de dividirse entre las dos puertas restantes de modo que ambas tengan una probabilidad de 1/2) porque en ningún caso puede el presentador abrir la puerta escogida inicialmente. Si el presentador escogiese al azar entre las dos puertas con cabras (incluyendo la del concursante), abriese una de ellas y luego diese de nuevo a elegir, entonces las dos puertas restantes sí tendrían la misma probabilidad de contener el coche.

Explicaciones alternativas

El problema con las 100 puertas

Una forma más clara de verlo es replantear el problema. Si en lugar de haber sólo tres puertas hubiese 100, y tras la elección original el presentador abriese 98 de las restantes para mostrar que tras de ellas hay cabras, si no cambiase su elección ganaría el coche sólo si lo ha escogido originalmente (1 de cada 100 veces), mientras que si la cambia, ganaría si no lo ha escogido originalmente (y por tanto es lo que resta tras abrir las 98 puertas), 99 de cada 100 veces.

Una explicación gráfica

Por si no se ve claro, aquí va una explicación gráfica: tenemos 3 cajas:

([?][?][?]) antes de comenzar el juego, la probabilidad de encontrar el premio entre las tres cajas es de 1/3 (es decir el premio está dentro del grupo de las tres cajas, y existe una posibilidad entre tres de encontrarlo).

Se elige la 1ra.

([?]) vs ([?][?]) ahora hay dos grupos: la caja que yo elegí (con probabilidad 1/3 y el grupo de las otras dos cajas (con probabilidad 2/3).

([?]) vs ([?][?]) = 1/3 vs (1/3,1/3)

Se descubre una cabra.

([?]) vs ([B][?]) = x vs (0,1-x)


¿Dónde es más probable que se encuentre el premio? ¿en mi caja o entre las otras dos (aunque una esté descubierta)?

Evidentemente es más probable que esté entre las otras dos.

Comprobémoslo con 6 cajas (cinco contienen cabra y una premio):

([?][?][?][?][?][?])antes de empezar hay una probabilidad 1/6 de encontrar el premio dentro del grupo.

Elijo la primera (o cualquier otra).

([?]) vs ([?][?][?][?][?])ahora hay dos grupos: la caja que yo elegí (con probabilidad 1/6 y el grupo de las otras cinco cajas (con probabilidad 5/6).

Preguntémonos en este punto: ¿dónde es más probable que esté el premio, en la caja que he elegido (1/6) o entre las 5 restantes (5/6)?

Se descubren 4 cabras.

([?]) vs ([B][B][?][B][B])=1/6 vs 5/6.

Otra vez la misma pregunta: ¿dónde es más probable que esté el premio, en mi caja o entre las otras 5?

Referencias

  • Bapeswara Rao, V. V. and Rao, M. Bhaskara (1992). "A three-door game show and some of its variants". The Mathematical Scientist 17, no. 2, pp. 89–94
  • Bohl, Alan H.; Liberatore, Matthew J.; and Nydick, Robert L. (1995). "A Tale of Two Goats... and a Car, or The Importance of Assumptions in Problem Solutions". Journal of Recreational Mathematics 1995, pp. 1–9.
  • Joseph Bertrand (1889) Calcul des probabilites
  • Gardner, Martin (1959). "Mathematical Games" column, Scientific American, October 1959, pp. 180–182. Reprinted in The Second Scientific American Book of Mathematical Puzzles and Diversions.
  • Martin, Phillip (1989). "The Monty Hall Trap", Bridge Today, May-June 1989. Reprinted in Granovetter, Pamela and Matthew, ed. (1993), For Experts Only, Granovetter Books.
  • Mueser, Peter R. and Granberg, Donald (1999), "The Monty Hall Dilemma Revisited: Understanding the Interaction of Problem Definition and Decision Making" (University of Missouri Working Paper 99-06). http://econwpa.wustl.edu:80/eps/exp/papers/9906/9906001.html (retrieved July 5, 2005).
  • Nahin, Paul J. Duelling idiots and other probability puzzlers. Princeton University Press, Princeton, NJ: 2000, pp. 192-193. (ISBN 0-691-00979-1).
  • Selvin, Steve (1975a). "A problem in probability" (letter to the editor). American Statistician 29(1):67 (February 1975).
  • Selvin, Steve (1975b). "On the Monty Hall problem" (letter to the editor). American Statistician 29(3):134 (August 1975).
  • Tierney, John (1991). "Behind Monty Hall's Doors: Puzzle, Debate and Answer?", The New York Times 21 July 1991, Sunday, Section 1; Part 1; Page 1; Column 5
  • vos Savant, Marilyn (1990). "Ask Marilyn" column, Parade Magazine p. 12 (17 February 1990). [cited in Bohl et al., 1995]
  • Adams, Cecil (1990). "On 'Let's Make a Deal,' you pick Door #1. Monty opens Door #2--no prize. Do you stay with Door #1 or switch to #3?", The Straight Dope November 2 1990. http://www.straightdope.com/classics/a3_189.html (retrieved July 25, 2005).
  • Tijms, Henk (2004). Understanding Probability, Chance Rules in Everyday Life. Cambridge University Press, New York, pp. 213-215.
  • Ziemer, Rodger E. (1997). Elements of Engineering Probability & Statistics. Prentice Hall, pp. 31-32.

Véase también

Enlaces externos

Obtenido de "Problema de Monty Hall"

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Problema de Monty Hall — El Problema de Monty Hall es un problema de probabilidad que está inspirado por el concurso televisivo estadounidense Let s Make a Deal. Su nombre proviene del nombre del presentador, Monty Hall. En este concurso, el concursante escoge una puerta …   Enciclopedia Universal

  • Anexo:Episodios de Numb3rs — La siguiente es una lista de episodios de la serie norteamericana NUMB3RS. Contenido 1 Estrenos y Lanzamientos en DVD 2 Primera temporada (2005) 3 Segunda temporada (2005 2006) …   Wikipedia Español

  • Prejuicio cognitivo — Saltar a navegación, búsqueda El hombre en el centro ha cometido un error en sus pasos de baile, y choca contra la mujer, que se enoja y los demás murmuran. Sólo las personas que vieron la miniserie Orgullo y prejuicio (1995) pueden entender el… …   Wikipedia Español

  • Anexo:Sesgos cognitivos — El hombre en el centro ha cometido un error en sus pasos de baile, y choca contra la mujer, que se enoja y los demás murmuran. En la obra de Jane Austen Orgullo y prejuicio (1813) se muestra claramente el prejuicio de clases sociales y cómo el… …   Wikipedia Español

  • Paradoja — Saltar a navegación, búsqueda Paradoja, del griego παρα (para) y δόξος (doxos), que significa “más allá de lo creíble”, es un concepto filosófico que emplea la lógica (Filosófico – Lógico) para darle nombre a situaciones, textos o circunstancias… …   Wikipedia Español

  • Wikipedia:Artículos peculiares — Atajos WP:PECULWP:PECUL WP:RAROWP:RARO …   Wikipedia Español

  • Falacia del jugador — Saltar a navegación, búsqueda La falacia del jugador es un falacia lógica por la que se cree erróneamente que los sucesos pasados afectan a los futuros en lo relativo a actividades aleatorias, como en muchos juegos de azar. Puede comprender las… …   Wikipedia Español

  • Marilyn vos Savant — Nombre Marilyn vos Savant Nacimiento 1 …   Wikipedia Español

  • That '70s Show — That s 70s Show Título El Show de los 70 Aquellos maravillosos 70 …   Wikipedia Español

  • Список телесериалов по наименованию — Содержание 1 Русскоязычные 2 На других языках 3 0 9 4 Латиница …   Википедия


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.