Funtor


Funtor

En teoría de categorías un funtor o functor es una función de una categoría a otra que lleva objetos a objetos y morfismos a morfismos de manera que la composición de morfismos y las identidades se preserven.

Los funtores primero se consideraron en topología algebraica, donde se asocian los objetos algebraicos con los espacios topológicos y se asocian los homomorfismos algebraicos con funciones continuas. Hoy en día, los funtores se utilizan a través de las matemáticas modernas para relacionar varias categorías.

Ejemplos de functores típicos son el funtor fiel y el funtor pleno.

Véase también


Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Funtor — En teoría de categorías un funtor es una función de una categoría a otra que lleva objetos a objetos y morfismos a morfismos de manera que la composición de morfismos y las identidades se preserven. Para la definición y los ejemplos exactos, vea… …   Enciclopedia Universal

  • Funtor exacto — En álgebra homológica, un funtor exacto es un funtor de una categoría abeliana a otra que preserva sucesiones exactas. Contenido 1 Definición formal 2 Ejemplos 3 Algunos hechos 4 …   Wikipedia Español

  • Funtor fiel — En la teoría de categorías, un funtor fiel es un funtor que es inyectivo cuando está restringido a cada conjunto de morfismos con un dominio (fuente) y un codominio (blanco) dados. Es decir un funtor F de una categoría C a una categoría D es fiel …   Wikipedia Español

  • Funtor pleno — En la teoría de categorías, un funtor pleno es un funtor que es sobreyectivo cuando está restringido a cada conjunto de morfismos con un dominio (fuente) y un codominio (blanco) dados. Es decir un funtor F de una categoría C a una categoría D es… …   Wikipedia Español

  • Funtor fiel — En la teoría de categorías, un funtor fiel es un funtor que es inyectivo cuando está restringido a cada conjunto de morfismos con un dominio (fuente) y un codominio (blanco) dados. Es decir un funtor F de una categoría C a una categoría D es fiel …   Enciclopedia Universal

  • Funtor pleno — En la teoría de categorías, un funtor pleno es un funtor que es sobreyectivo cuando está restringido a cada conjunto de morfismos con un dominio (fuente) y un codominio (blanco) dados. Es decir un funtor F de una categoría C a una categoría D es… …   Enciclopedia Universal

  • Funtores adjuntos — La existencia de muchos pares de funtores adjuntos es una observación importante de la rama de la matemática conocida como teoría de categorías. (La teoría de categorías continúa en cierta forma la visión estructuralista en matemática; ver… …   Wikipedia Español

  • Teoría de categorías — En este artículo se detectaron los siguientes problemas: Necesita ser wikificado conforme a las convenciones de estilo de Wikipedia. Podría ser difícil de entender para lectores interesados en el tema. Por favor …   Wikipedia Español

  • Objeto libre — En las Matemáticas, uno de los conceptos fundamentales del álgebra abstracta es la idea del objeto libre. Forma parte del álgebra universal, puesto que se relaciona a todos los tipos de estructura algebraica (con operaciones finitas). También se… …   Wikipedia Español

  • Transformación natural — En teoría de categorías, un rama de las matemáticas. Una transformación natural proporciona una manera de transformar un funtor en otro mientras que se respeta la estructura interna, es decir la composición de morfismos, de las categorías… …   Wikipedia Español