Sólidos arquimedianos


Sólidos arquimedianos
Sólidos arquimedianos
Nombre Imagen Caras Aristas Vértices Simetría
Tetraedro truncado Truncatedtetrahedron.jpg
Animación
8 4 × hr
4 × te
18 12 × 3·6·6 Td
Cuboctaedro Cuboctahedron.jpg
Animación
14 6 × cu
8 × te
24 12 × 3·4·3·4 Oh
Cubo truncado Truncatedhexahedron.jpg
Animación
14 6 × or
8 × te
36 24 × 3·8·8 Oh
Octaedro truncado Truncatedoctahedron.jpg
Animación
14 8 × hr
6 × cu
36 24 × 4·6·6 Oh
Rombicuboctaedro
o rombicuboctaedro menor
Rhombicuboctahedron.jpg
Animación
26 18 × cu
8 × te
48 24 × 3·4·4·4 Oh
Cuboctaedro truncado
o rombicuboctaedro mayor
Truncatedcuboctahedron.jpg
Animación
26 6 × or
8 × hr
12 × cu
72 48 × 4·6·8 Oh
Cubo romo
o cuboctaedro romo
(2 formas quirales)
Snubhexahedronccw.jpg
Animación
Snubhexahedroncw.jpg
Animación
38 6 × cu
32 × te
60 24 × 3·3·3·3·4 O
Icosidodecaedro Icosidodecahedron.jpg
Animación
32 12 × pr
20 × te
60 30 × 3·5·3·5 Ih
Dodecaedro truncado Truncateddodecahedron.jpg
Animación
32 12 × dr
20 × te
90 60 × 3·10·10 Ih
Icosaedro truncado Truncatedicosahedron.jpg
Animación
32 20 × hr
12 × pr
90 60 × 5·6·6 Ih
Rombicosidodecaedro
o rombicosidodecaedro menor
Rhombicosidodecahedron.jpg
Animación
62 12 × pr
30 × cu
20 × te
120 60 × 3·4·5·4 Ih
Icosidodecaedro truncado
o rombicosidodecaedro mayor
Truncatedicosidodecahedron.jpg
Animación
62 12 × dr
20 × hr
30 × cu
180 120 × 4·6·10 Ih
Dodecaedro romo
o icosidodecaedro romo
(2 formas quirales)
Snubdodecahedronccw.jpg
Animación
Snubdodecahedroncw.jpg
Animación
92 12 × pr
80 × te
150 60 × 3·3·3·3·5 I
dr = decágonos regulares; or = octógonos regulares; hr = hexágonos regulares
pr = pentágonos regulares; cu = cuadrados; te = triángulos equiláteros

Los sólidos arquimedianos o sólidos de Arquímedes son un grupo de poliedros convexos cuyas caras son polígonos regulares de dos o más tipos. Todos los sólidos de Arquímedes son de vértices uniformes. La mayoría de ellos se obtienen truncando los sólidos platónicos. Arquímedes describió ampliamente estos cuerpos en trabajos que fueron desapareciendo, fue sólo en el Renacimiento cuando artistas y matemáticos los redescubrieron.

Siete sólidos arquimedianos se pueden obtener truncando sólidos platónicos: el tetraedro truncado, el cuboctaedro, el cubo truncado, el octaedro truncado, el icosidodecaedro, el dodecaedro truncado y el icosaedro truncado.

Los dos rombicuboctaedros se pueden obtener a partir del cuboctaedro mediante sucesivas operaciones de truncamiento y desplazamiento radial de las caras.

De forma similar, los dos rombicosidodecaedros se pueden obtener a partir del icosidodecaedro mediante sucesivas operaciones de truncamiento y desplazamiento radial de las caras.

Las dos formas quirales del cuboctaedro romo se pueden obtener a partir del rombicuboctaedro menor mediante una transformación más compleja que incluye una rotación coordinada de los cuadrados paralelos a los originales del cubo, de los triángulos que los conectan por sus vértices y, simultáneamente, la conversión de cada uno de los cuadrados que los conectan por las aristas en dos triángulos equiláteros. El sentido de la rotación de los cuadrados determina la quiralidad del sólido resultante.

De forma similar, las dos formas quirales del icosidodecaedro romo se pueden obtener a partir del rombicosidodecaedro menor mediante una rotación coordinada de los pentágonos paralelos a los originales del dodecaedro, de los triángulos que los conectan por sus vértices y, simultáneamente, la conversión de cada uno de los cuadrados que los conectan por las aristas en dos triángulos equiláteros. El sentido de la rotación de los pentágonos determina la quiralidad del sólido resultante.

El cuboctaedro es el caso límite coincidente del truncamiento del cubo y del octaedro. De forma similar, el icosidodecaedro es el caso límite coincidente del truncamiento del dodecaedro y del icosaedro. Ambos son los únicos sólidos arquimedianos cuyas aristas son uniformes, por lo que se consideran sólidos semirregulares.

Dado que en los vértices de los sólidos arquimedianos se encuentran varios tipos de polígonos se ha buscado una forma de nombrar la forma de los vértices; se dice por ejemplo que un vértice tiene configuración (5,5,3) cuando en el vértice se encuentran dos pentágonos y un triángulo, como en el icosidodecaedro. Este sistema se aplica para todos las demás familias de poliedros.

Bibliografía

  • Sutton, David (2005). Sólidos platónicos y arquimedianos. Oniro S. A. ISBN 84-9754-131-6. 

Véase también


Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Sólidos platónicos — Los sólidos platónicos son poliedros convexos cuyas caras son polígonos regulares iguales y en cuyos vértices se unen el mismo número de caras. Reciben este nombre en honor al filósofo griego Platón (ca. 427 adC/428 adC – 347 adC), a quien se… …   Wikipedia Español

  • Poliedro — Saltar a navegación, búsqueda Poliedros Un poliedro es, en el sentido dado por la Geometría clásica al término, un cuerpo geométrico cuyas caras son planas y encierran un volumen finito. Los poliedros se conciben como cuerpos tridimensionales,… …   Wikipedia Español

  • Girobicúpula cuadrada elongada — Imágen del sólido Tipo Johnson J36 J37 J38 …   Wikipedia Español

  • Poliedro de caras regulares — Saltar a navegación, búsqueda Poliedro de caras regulares pero no regular en sí mismo. Un poliedro de caras regulares es un poliedro que cumple la única condición de que todas sus caras son polígonos regulares. Un poliedro de caras regulares no… …   Wikipedia Español

  • Tetraedro truncado — Familia: Sólidos de Arquímedes Imágen del sólido Caras 8 …   Wikipedia Español

  • Cubo romo — Saltar a navegación, búsqueda cubo romo Grupo Sólidos de Arquímedes Número de caras 38 Polígonos que forman las caras 32 triángu …   Wikipedia Español

  • Cubo truncado — Saltar a navegación, búsqueda Cubo truncado Grupo Sólidos de Arquímedes Número de caras 14 Polígonos que forman las caras 8 …   Wikipedia Español

  • Cuboctaedro — Familia: Sólidos de Arquímedes Imágen del sólido Caras 14 …   Wikipedia Español

  • Cuboctaedro truncado — Saltar a navegación, búsqueda Cuboctaedro truncado Grupo Sólidos de Arquímedes Número de caras 26 Polígonos que forman las caras …   Wikipedia Español

  • Dodecaedro romo — Icosidodecaedro romo Grupo Sólidos de Arquímedes Número de caras 92 Polígonos que forman las caras 80 triángulos equiláteros 12 Pentágonos …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.